Recent Advances in Non-perfect Secret Sharing Schemes

A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret have partial information about it. This paper is a survey of the recent advances in non-perfect secret sharing schemes. We provide an overview of the techniques for constructing efficient non-perfect secret sharing schemes, bounds on the efficiency of these schemes, and results on the characterization of the ideal ones. We put special emphasis on the connections between non-perfect secret sharing schemes and polymatroids, matroids, information theory, and coding theory.

[1]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[2]  Olav Geil,et al.  Asymptotically good ramp secret sharing schemes , 2015, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  Carles Padró,et al.  On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..

[4]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[5]  Raymond W. Yeung,et al.  Two-partition-symmetrical entropy function regions , 2013, 2013 IEEE Information Theory Workshop (ITW).

[6]  Ivan Damgård,et al.  Atomic Secure Multi-party Multiplication with Low Communication , 2007, EUROCRYPT.

[7]  Carles Padró,et al.  Optimal Non-perfect Uniform Secret Sharing Schemes , 2014, CRYPTO.

[8]  Hao Chen,et al.  Secure Computation from Random Error Correcting Codes , 2007, EUROCRYPT.

[9]  Carles Padró,et al.  A Note on Non-Perfect Secret Sharing , 2016, IACR Cryptol. ePrint Arch..

[10]  S. Tsujii,et al.  Nonperfect Secret Sharing Schemes , 1992, AUSCRYPT.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[13]  Kaoru Kurosawa,et al.  Nonperfect Secret Sharing Schemes and Matroids , 1994, EUROCRYPT.

[14]  Ignacio Cascudo,et al.  Strongly Multiplicative Ramp Schemes from High Degree Rational Points on Curves , 2008, EUROCRYPT.

[15]  Carles Padró,et al.  Extending Brickell–Davenport theorem to non-perfect secret sharing schemes , 2013, Designs, Codes and Cryptography.

[16]  Yuan Luo,et al.  Relative generalized Hamming weights of one-point algebraic geometric codes , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[17]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[18]  Yuval Ishai,et al.  Linear-time encodable codes meeting the gilbert-varshamov bound and their cryptographic applications , 2014, ITCS.

[19]  Ivan Damgård,et al.  Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions , 2015, EUROCRYPT.

[20]  Yuval Ishai,et al.  Lossy Chains and Fractional Secret Sharing , 2013, STACS.

[21]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[22]  Pascal Paillier,et al.  On Ideal Non-perfect Secret Sharing Schemes , 1997, Security Protocols Workshop.

[23]  Toru Fujiwara,et al.  Optimum General Threshold Secret Sharing , 2012, ICITS.

[24]  Kaoru Kurosawa,et al.  Lower Bound on the Size of Shares of Nonperfect Secret Sharing Schemes , 1994, ASIACRYPT.

[25]  Matthew K. Franklin,et al.  Communication complexity of secure computation (extended abstract) , 1992, STOC '92.

[26]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[27]  Toru Fujiwara,et al.  Secure Construction for Nonlinear Function Threshold Ramp Secret Sharing , 2007, 2007 IEEE International Symposium on Information Theory.

[28]  Ignacio Cascudo,et al.  Bounds on the Threshold Gap in Secret Sharing and its Applications , 2013, IEEE Transactions on Information Theory.

[29]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[30]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.