Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?
暂无分享,去创建一个
[1] W. F. Osgood. Beweis der Existenz einer Lösung der Differentialgleichung $$\frac{{dy}}{{dx}} = f\left( {x,y} \right)$$ ohne Hinzunahme der Cauchy-Lipschitz'schen Bedingung , 1898 .
[2] Jeff B. Paris,et al. A Hierarchy of Cuts in Models of Arithmetic , 1980 .
[3] Marian Boylan Pour-el,et al. A computable ordinary differential equation which possesses no computable solution , 1979 .
[4] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .
[5] Stephen G. Simpson,et al. Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..
[6] Oliver Aberth. The failure in computable analysis of a classical existence theorem for differential equations , 1971 .
[7] J. Paris,et al. ∑n-Collection Schemas in Arithmetic , 1978 .
[8] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[9] Oliver Aberth,et al. Computable analysis , 1980 .
[10] Stephen G. Simpson,et al. Degrees of Unsolvability: A Survey of Results , 1977 .
[11] Stephen G. Simpson,et al. A Finite Combinatorial Principle Which is Equivalent to the 1-Consistency of Predicative Analysis , 1982 .
[12] Georg Kreisel,et al. HILBERT'S PROGRAMME , 1958 .
[13] Jeff B. Paris,et al. Initial segments of models of Peano's axioms , 1977 .
[14] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[15] M. B. Pour-El,et al. COMPUTABILITY AND NONCOMPUTABILITY IN CLASSICAL ANALYSIS , 1983 .
[16] G. Peano,et al. Démonstration de l'intégrabilité des équations différentielles ordinaires , 1890 .