Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?

We investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA 0 whose principal axioms are comprehension and induction. Our main result is that, over RCA 0 , the Cauchy/Peano Theorem is provably equivalent to weak Konig's lemma, i.e. the statement that every infinite {0, 1}-tree has a path. We also show that, over RCA 0 , the Ascoli lemma is provably equivalent to arithmetical comprehension, as is Osgood's theorem on the existence of maximum solutions. At the end of the paper we digress to relate our results to degrees of unsolvability and to computable analysis.

[1]  W. F. Osgood Beweis der Existenz einer Lösung der Differentialgleichung $$\frac{{dy}}{{dx}} = f\left( {x,y} \right)$$ ohne Hinzunahme der Cauchy-Lipschitz'schen Bedingung , 1898 .

[2]  Jeff B. Paris,et al.  A Hierarchy of Cuts in Models of Arithmetic , 1980 .

[3]  Marian Boylan Pour-el,et al.  A computable ordinary differential equation which possesses no computable solution , 1979 .

[4]  R. Soare,et al.  Π⁰₁ classes and degrees of theories , 1972 .

[5]  Stephen G. Simpson,et al.  Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..

[6]  Oliver Aberth The failure in computable analysis of a classical existence theorem for differential equations , 1971 .

[7]  J. Paris,et al.  ∑n-Collection Schemas in Arithmetic , 1978 .

[8]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[9]  Oliver Aberth,et al.  Computable analysis , 1980 .

[10]  Stephen G. Simpson,et al.  Degrees of Unsolvability: A Survey of Results , 1977 .

[11]  Stephen G. Simpson,et al.  A Finite Combinatorial Principle Which is Equivalent to the 1-Consistency of Predicative Analysis , 1982 .

[12]  Georg Kreisel,et al.  HILBERT'S PROGRAMME , 1958 .

[13]  Jeff B. Paris,et al.  Initial segments of models of Peano's axioms , 1977 .

[14]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[15]  M. B. Pour-El,et al.  COMPUTABILITY AND NONCOMPUTABILITY IN CLASSICAL ANALYSIS , 1983 .

[16]  G. Peano,et al.  Démonstration de l'intégrabilité des équations différentielles ordinaires , 1890 .