First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets

ABSTRACT We present an analysis of the luminosity distances of Type Ia Supernovae (SNe) from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey in conjunction with other intermediate-redshift (z 97 per cent level from this single data set. We find good agreement between the SN and BAO distance measurements, both consistent with a Λ-dominated cold dark matter cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (dL) and angular diameter (dA) distance measures. We then use these data to estimate w within this restricted redshift range (z < 0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81+0.16-0.18 (stat) +/- 0.15 (sys) and ΩM = 0.22+0.09-0.08 assuming a flat universe. This value of w and associated errors only change slightly if curvature is allowed to vary, consistent with constraints from the cosmic microwave background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.

[1]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[2]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[3]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II (SDSS-II) SUPERNOVA RESULTS: CONSTRAINTS ON NONSTANDARD COSMOLOGICAL MODELS , 2009, 0908.4276.

[4]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[5]  L. Verde,et al.  Consistency among distance measurements: transparency, BAO scale and accelerated expansion , 2009, 0902.2006.

[6]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[7]  M. Sullivan,et al.  THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS , 2009, 0901.2476.

[8]  J. Bovy,et al.  COSMIC TRANSPARENCY: A TEST WITH THE BARYON ACOUSTIC FEATURE AND TYPE Ia SUPERNOVAE , 2008, 0810.5553.

[9]  I. Hook,et al.  THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56Ni YIELD IN TYPE Ia SUPERNOVAE , 2008, 0810.0031.

[10]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.

[11]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[12]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[13]  Mark C. Neyrinck,et al.  An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs-Wolfe Effect , 2008, 0805.3695.

[14]  O. Lahav,et al.  The three faces of Ωm: testing gravity with low- and high-redshift SNe Ia surveys , 2008, 0805.3160.

[15]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[16]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[17]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[18]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[19]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[20]  Ulrich Hopp,et al.  FIRST-YEAR SPECTROSCOPY FOR THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY , 2008, 0802.3220.

[21]  Michael S. Warren,et al.  Peculiar velocities into the next generation: cosmological parameters from large surveys without bias from non-linear structure , 2008, 0802.1935.

[22]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[23]  B. Holwerda,et al.  Host galaxy extinction of Type Ia supernovae: co-evolution of interstellar medium structure and the extinction law with star formation , 2008, 0801.4926.

[24]  Adam D. Myers,et al.  Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.

[25]  Shirley Ho,et al.  Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.

[26]  R. Lazkoz,et al.  Comparison of standard ruler and standard candle constraints on dark energy models , 2007, 0712.1232.

[27]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[28]  N. B. Suntzeff,et al.  Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.

[29]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[30]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[31]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[32]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[33]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[34]  C Gordon,et al.  Cosmological constraints from type ia supernovae peculiar velocity measurements. , 2007, Physical review letters.

[35]  M. Sullivan,et al.  Is There Evidence for a Hubble Bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies , 2007, 0705.0367.

[36]  Yun Wang,et al.  Observational Constraints on Dark Energy and Cosmic Curvature , 2007, astro-ph/0703780.

[37]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[38]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[39]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[40]  K. Land,et al.  Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs–Wolfe effect , 2006, astro-ph/0610911.

[41]  J. Uzan The acceleration of the universe and the physics behind it , 2006, astro-ph/0605313.

[42]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[43]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[44]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[45]  K. Masters,et al.  SFI++ I: A New I-Band Tully-Fisher Template, the Cluster Peculiar Velocity Dispersion, and H0 , 2006, astro-ph/0609249.

[46]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[47]  Alexander G. Gray,et al.  High redshift detection of the integrated Sachs-Wolfe effect , 2006, astro-ph/0607572.

[48]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[49]  G. Huetsi Power spectrum of the SDSS luminous red galaxies: constraints on cosmological parameters , 2006, astro-ph/0604129.

[50]  Xu Zhou,et al.  Determination of the Hubble Constant, the Intrinsic Scatter of Luminosities of Type Ia Supernovae, and Evidence for Nonstandard Dust in Other Galaxies , 2006, astro-ph/0603392.

[51]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[52]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[53]  M. Turner,et al.  What Do We Really Know about Cosmic Acceleration? , 2005, astro-ph/0512586.

[54]  L. Hui,et al.  Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.

[55]  E. Linder Cosmic growth history and expansion history , 2005, astro-ph/0507263.

[56]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005, astro-ph/0506583.

[57]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[58]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[59]  A. Filippenko,et al.  Type Ia Supernovae and Cosmology , 2004, astro-ph/0410609.

[60]  J. Brinkmann,et al.  Correlating the CMB with luminous red galaxies: The Integrated Sachs-Wolfe effect , 2004, astro-ph/0410360.

[61]  Harry L. Shipman,et al.  White Dwarfs: Cosmological and Galactic Probes , 2005 .

[62]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[63]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[64]  M. Kunz,et al.  Cosmic distance-duality as a probe of exotic physics and acceleration , 2003, astro-ph/0312443.

[65]  Y. Loh,et al.  Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources , 2003, astro-ph/0308260.

[66]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, astro-ph/0305097.

[67]  Robert Crittenden,et al.  A correlation between the cosmic microwave background and large-scale structure in the Universe , 2004, Nature.

[68]  F. Castander,et al.  Detection of the Integrated Sachs-Wolfe and Sunyaev-Zeldovich Effects from the Cosmic Microwave Background-Galaxy Correlation , 2003 .

[69]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[70]  R. Nichol,et al.  Physical evidence for dark energy , 2003, astro-ph/0307335.

[71]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[72]  Pablo Fosalba,et al.  Measurement of the gravitational potential evolution from the cross‐correlation between WMAP and the APM Galaxy Survey , 2003, astro-ph/0305468.

[73]  S. Djorgovski,et al.  A Model-Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of Redshift and Constraints on Dark Energy , 2003, astro-ph/0305197.

[74]  F. Timmes,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .

[75]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[76]  Gerson Goldhaber,et al.  Multicolor Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: A Novel Step toward More Precise Distance and Extinction Estimates , 2003, astro-ph/0302341.

[77]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[78]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[79]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[80]  D. Huterer,et al.  Parametrization of dark-energy properties: a principal-component approach. , 2002, Physical review letters.

[81]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[82]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[83]  Alan Uomoto,et al.  The [CLC][ITAL]u[/ITAL][/CLC][arcmin]′[CLC][ITAL]g[/ITAL][/CLC][arcmin]′[CLC][ITAL]r[/ITAL][/CLC][arcmin]′[CLC][ITAL]i[/ITAL][/CLC][arcmin]′[CLC][ITAL]z[/ITAL][/CLC][arcmin]′ Standard-Star System , 2002 .

[84]  C. Csáki,et al.  Dimming supernovae without cosmic acceleration. , 2001, Physical review letters.

[85]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[86]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[87]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[88]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[89]  R. Ellis,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[90]  Christopher J. Miller,et al.  Possible Detection of Baryonic Fluctuations in the Large-Scale Structure Power Spectrum , 2001, astro-ph/0103018.

[91]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[92]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[93]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[94]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[95]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[96]  R. Schommer,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[97]  J. C. Lee,et al.  Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.

[98]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[99]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[100]  N. Turok,et al.  Looking for a cosmological constant with the Rees-Sciama effect. , 1996, Physical review letters.

[101]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[102]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[103]  M. Hamuy,et al.  K-CORRECTIONS FOR TYPE IA SUPERNOVAE , 1993 .

[104]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[105]  R. Sachs,et al.  General relativity and cosmology , 1977 .

[106]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[107]  I. M. H. Etherington LX. On the definition of distance in general relativity , 1933 .