Microtubule nucleation: beyond the template

[1]  Kenneth H. Downing,et al.  Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. , 2017, Journal of molecular biology.

[2]  M. Nachury,et al.  Tubulin acetylation protects long-lived microtubules against mechanical aging , 2017, Nature Cell Biology.

[3]  L. Pelletier,et al.  Mitotic spindle assembly in animal cells: a fine balancing act , 2017, Nature Reviews Molecular Cell Biology.

[4]  Ariana D. Sanchez,et al.  Microtubule-organizing centers: from the centrosome to non-centrosomal sites. , 2017, Current opinion in cell biology.

[5]  G. Goshima,et al.  Five factors can reconstitute all three phases of microtubule polymerization dynamics , 2016, The Journal of cell biology.

[6]  C. Hoogenraad,et al.  Molecular Pathway of Microtubule Organization at the Golgi Apparatus. , 2016, Developmental cell.

[7]  D. St Johnston,et al.  Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis , 2016, Developmental cell.

[8]  T. Surrey,et al.  The size of the EB cap determines instantaneous microtubule stability , 2016, eLife.

[9]  E. Nogales,et al.  Visualizing microtubule structural transitions and interactions with associated proteins. , 2016, Current opinion in structural biology.

[10]  M. McClellan,et al.  Suppression of microtubule assembly kinetics by the mitotic protein TPX2 , 2016, Journal of Cell Science.

[11]  E. Nogales An electron microscopy journey in the study of microtubule structure and dynamics , 2015, Protein science : a publication of the Protein Society.

[12]  T. Surrey,et al.  Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module , 2015, Nature Cell Biology.

[13]  K. Oegema,et al.  NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans , 2015, eLife.

[14]  M. Wieczorek,et al.  Microtubule-associated proteins control the kinetics of microtubule nucleation , 2015, Nature Cell Biology.

[15]  E. Schiebel,et al.  Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. , 2015, Trends in cell biology.

[16]  Masayoshi Nakamura Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. , 2015, The New phytologist.

[17]  Akatsuki Kimura,et al.  Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN] , 2015, Plant Cell.

[18]  Kimberly K. Fong,et al.  Ring closure activates yeast γTuRC for species-specific microtubule nucleation , 2014, Nature Structural &Molecular Biology.

[19]  Bo Liu,et al.  Augmin Triggers Microtubule-Dependent Microtubule Nucleation in Interphase Plant Cells , 2014, Current Biology.

[20]  L. Rice,et al.  The contribution of αβ-tubulin curvature to microtubule dynamics , 2014, The Journal of cell biology.

[21]  T. Kapoor,et al.  Reconstitution of the augmin complex provides insights into its architecture and function , 2014, Nature Cell Biology.

[22]  J. Howard,et al.  Stu2, the Budding Yeast XMAP215/Dis1 Homolog, Promotes Assembly of Yeast Microtubules by Increasing Growth Rate and Decreasing Catastrophe Frequency* , 2014, The Journal of Biological Chemistry.

[23]  N. Grishin,et al.  A tethered delivery mechanism explains the catalytic action of a microtubule polymerase , 2014, eLife.

[24]  Eugene A. Katrukha,et al.  Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development , 2014, Neuron.

[25]  D. Baker,et al.  High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis , 2014, Cell.

[26]  Lisa Weber,et al.  Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation , 2014, eLife.

[27]  Melissa C. Hendershott,et al.  Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin , 2014, Proceedings of the National Academy of Sciences.

[28]  C. Hoogenraad,et al.  Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. , 2014, Developmental cell.

[29]  D. Ehrhardt,et al.  A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing , 2013, Science.

[30]  E. Holzbaur,et al.  Dynactin Subunit p150Glued Is a Neuron-Specific Anti-Catastrophe Factor , 2013, PLoS biology.

[31]  T. Mitchison,et al.  Branching Microtubule Nucleation in Xenopus Egg Extracts Mediated by Augmin and TPX2 , 2013, Cell.

[32]  J. Howard,et al.  Microtubule catastrophe and rescue. , 2013, Current opinion in cell biology.

[33]  Surajit Ghosh,et al.  Micropattern-controlled local microtubule nucleation, transport, and mesoscale organization. , 2013, ACS chemical biology.

[34]  G. Goshima,et al.  Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin , 2012, The Journal of cell biology.

[35]  M. Takeichi,et al.  Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules , 2012, Proceedings of the National Academy of Sciences.

[36]  J. Roig,et al.  The where, when and how of microtubule nucleation – one ring to rule them all , 2012, Journal of Cell Science.

[37]  D. Odde,et al.  Estimating the Microtubule GTP Cap Size In Vivo , 2012, Current Biology.

[38]  L. Rice,et al.  A TOG:αβ-tubulin Complex Structure Reveals Conformation-Based Mechanisms for a Microtubule Polymerase , 2012, Science.

[39]  Ryo Nitta,et al.  Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy , 2012, The Journal of cell biology.

[40]  Hwajin Kim,et al.  Fission yeast Alp14 is a dose-dependent plus end–tracking microtubule polymerase , 2012, Molecular biology of the cell.

[41]  J. Ross,et al.  Microtubule-severing enzymes at the cutting edge , 2012, Journal of Cell Science.

[42]  G. Goshima,et al.  An Inducible RNA Interference System in Physcomitrella patens Reveals a Dominant Role of Augmin in Phragmoplast Microtubule Generation[W][OA] , 2012, Plant Cell.

[43]  E. O'Toole,et al.  The Role of γ-Tubulin in Centrosomal Microtubule Organization , 2012, PloS one.

[44]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[45]  F. Chang,et al.  Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. , 2011, Trends in cell biology.

[46]  J. Howard,et al.  Rapid Microtubule Self-Assembly Kinetics , 2011, Cell.

[47]  Fengli Guo,et al.  Interaction of Antiparallel Microtubules in the Phragmoplast Is Mediated by the Microtubule-Associated Protein MAP65-3 in Arabidopsis[W] , 2011, Plant Cell.

[48]  Bo Liu,et al.  Augmin Plays a Critical Role in Organizing the Spindle and Phragmoplast Microtubule Arrays in Arabidopsis[W] , 2011, Plant Cell.

[49]  A. Hoenger,et al.  GTPγS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs) , 2011, Proceedings of the National Academy of Sciences.

[50]  Jonathon Howard,et al.  XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region , 2011, Proceedings of the National Academy of Sciences.

[51]  C. Dai,et al.  Department of Biochemistry , 2011 .

[52]  Sarah S. Goodwin,et al.  Patronin Regulates the Microtubule Network by Protecting Microtubule Minus Ends , 2010, Cell.

[53]  Antoine M. van Oijen,et al.  CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. , 2010, Developmental cell.

[54]  Kenneth H Downing,et al.  Structural basis of interprotofilament interaction and lateral deformation of microtubules. , 2010, Structure.

[55]  Jessica K. Polka,et al.  Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry , 2010, Nature.

[56]  Tomoyuki U. Tanaka,et al.  Kinetochores Generate Microtubules with Distal Plus Ends: Their Roles and Limited Lifetime in Mitosis , 2010, Developmental cell.

[57]  J. McIntosh,et al.  Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. , 2009, Journal of molecular biology.

[58]  Jesse C. Gatlin,et al.  Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. , 2009, Molecular biology of the cell.

[59]  E. Karsenti,et al.  XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. , 2009, Molecular biology of the cell.

[60]  J. Mozziconacci,et al.  Tubulin Dimers Oligomerize before Their Incorporation into Microtubules , 2008, PloS one.

[61]  O. Gruss,et al.  Meiotic Regulation of TPX2 Protein Levels Governs Cell Cycle Progression in Mouse Oocytes , 2008, PloS one.

[62]  G. C. Rogers,et al.  A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. , 2008, Molecular biology of the cell.

[63]  G. Goshima,et al.  Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle , 2008, The Journal of cell biology.

[64]  Ronald D. Vale,et al.  Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin , 2008, Nature.

[65]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[66]  Jonathon Howard,et al.  Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol , 2007, Current Biology.

[67]  J. Yates,et al.  Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. , 2007, Developmental cell.

[68]  R. Wollman,et al.  Genes Required for Mitotic Spindle Assembly in Drosophila S2 Cells , 2007, Science.

[69]  J. Cole,et al.  Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing , 2007, The Journal of cell biology.

[70]  Anthony A Hyman,et al.  Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. , 2007, Structure.

[71]  A. Hyman,et al.  Katanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis , 2006, Current Biology.

[72]  E. Hannak,et al.  Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle , 2006, The Journal of cell biology.

[73]  G. Wasteneys,et al.  MICROTUBULE ORGANIZATION 1 Regulates Structure and Function of Microtubule Arrays during Mitosis and Cytokinesis in the Arabidopsis Root1[W] , 2005, Plant Physiology.

[74]  E. Nogales,et al.  Assembly of GMPCPP-Bound Tubulin into Helical Ribbons and Tubes and Effect of Colchicine , 2005, Cell cycle.

[75]  D. Agard,et al.  Insights into microtubule nucleation from the crystal structure of human γ-tubulin , 2005, Nature.

[76]  R. Pepperkok,et al.  Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. , 2004, Molecular biology of the cell.

[77]  R. Gräf,et al.  Regulated expression of the centrosomal protein DdCP224 affects microtubule dynamics and reveals mechanisms for the control of supernumerary centrosome number. , 2003, Molecular biology of the cell.

[78]  Richard Bayliss,et al.  Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. , 2003, Molecular cell.

[79]  A. Hoenger,et al.  Importin α‐regulated nucleation of microtubules by TPX2 , 2003 .

[80]  R. Pepperkok,et al.  Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells , 2002, Nature Cell Biology.

[81]  E. Karsenti,et al.  XMAP215 Is Required for the Microtubule-Nucleating Activity of Centrosomes , 2002, Current Biology.

[82]  S. Block,et al.  The importance of lattice defects in katanin-mediated microtubule severing in vitro. , 2002, Biophysical journal.

[83]  P. Gönczy,et al.  The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent , 2002, The Journal of cell biology.

[84]  D. Odde,et al.  Estimates of lateral and longitudinal bond energies within the microtubule lattice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  C. Sunkel,et al.  Organized microtubule arrays in γ-tubulin-depleted Drosophila spermatocytes , 2001, Current Biology.

[86]  E. Salmon,et al.  Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. , 2001, Molecular biology of the cell.

[87]  S. Strome,et al.  Spindle Dynamics and the Role of γ-Tubulin in Early Caenorhabditis elegans Embryos , 2001 .

[88]  I. Vernos,et al.  Ran Induces Spindle Assembly by Reversing the Inhibitory Effect of Importin α on TPX2 Activity , 2001, Cell.

[89]  Eric Karsenti,et al.  Tpx2, a Novel Xenopus Map Involved in Spindle Pole Organization , 2000, The Journal of cell biology.

[90]  D. Agard,et al.  Structure of the γ-tubulin ring complex: a template for microtubule nucleation , 2000, Nature Cell Biology.

[91]  Yixian Zheng,et al.  A new function for the γ -tubulin ring complex as a microtubule minus-end cap , 2000, Nature Cell Biology.

[92]  T. J. Keating,et al.  Centrosomal and non‐centrosomal microtubules , 1999, Biology of the cell.

[93]  Timothy J. Mitchison,et al.  Characterization of Two Related Drosophila γ-tubulin Complexes that Differ in Their Ability to Nucleate Microtubules , 1999, The Journal of cell biology.

[94]  H. Flyvbjerg,et al.  Microtubule dynamics. II. Kinetics of self-assembly , 1997 .

[95]  S. Leibler,et al.  Kinetics of self-assembling microtubules: an "inverse problem" in biochemistry. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  T. Mitchison,et al.  Identification of a Protein That Interacts with Tubulin Dimers and Increases the Catastrophe Rate of Microtubules , 1996, Cell.

[97]  Yixian Zheng,et al.  Nucleation of microtubule assembly by a γ-tubulin-containing ring complex , 1995, Nature.

[98]  R. Wade,et al.  How does taxol stabilize microtubules? , 1995, Current Biology.

[99]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[100]  E. Nogales,et al.  Structure of tubulin at 6.5 Å and location of the taxol-binding site , 1995, Nature.

[101]  Flyvbjerg,et al.  Spontaneous nucleation of microtubules. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  M. Kirschner,et al.  In vitro reconstitution of centrosome assembly and function: The central role of γ-tubulin , 1994, Cell.

[103]  R. Vale,et al.  Identification of katanin, an ATPase that severs and disassembles stable microtubules , 1993, Cell.

[104]  R A Milligan,et al.  Kinesin follows the microtubule's protofilament axis , 1993, The Journal of cell biology.

[105]  A. Hyman,et al.  Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. , 1992, Molecular biology of the cell.

[106]  P. Baas,et al.  The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon , 1992, The Journal of cell biology.

[107]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[108]  M. Kirschner,et al.  Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs , 1987, The Journal of cell biology.

[109]  M. Kirschner,et al.  A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end , 1987, The Journal of cell biology.

[110]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[111]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[112]  H. Erickson,et al.  The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. , 1984, The Journal of biological chemistry.

[113]  T. Pollard,et al.  Kinetic evidence for a monomer activation step in actin polymerization. , 1983, Biochemistry.

[114]  E. Korn,et al.  The kinetics of actin nucleation and polymerization. , 1983, The Journal of biological chemistry.

[115]  E. Hamel,et al.  Interactions of taxol, microtubule-associated proteins, and guanine nucleotides in tubulin polymerization. , 1981, The Journal of biological chemistry.

[116]  K. Gekko,et al.  Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. , 1981, Biochemistry.

[117]  H. Erickson,et al.  The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers. , 1981, Biophysical journal.

[118]  J. Lee,et al.  In vitro reconstitution of calf brain microtubules: effects of solution variables. , 1977, Biochemistry.

[119]  J. Hirsh,et al.  In vitro formation of filaments from calf brain microtubule protein. , 1975, Archives of biochemistry and biophysics.

[120]  J. Wilbur,et al.  Interplay between spindle architecture and function. , 2013, International review of cell and molecular biology.

[121]  D. Gard,et al.  MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. , 2004, International review of cytology.

[122]  A. Hyman,et al.  Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts , 1999, Nature Cell Biology.