Robust H∞ control of hysteresis in a piezoelectric stack actuator

Abstract This paper describes a method for controlling a piezoelectric stack actuator with hysteresis nonlinearity. The actuator used is a high-performance monolithic multilayer piezo actuator. The proposed control method involves a circuit, which was built with a capacitor in series with the piezo actuator to provide a measured output voltage which is proportional to the charge on the piezo actuator. The controller is designed based on a model of the hysteresis nonlinearity constructed using experimental data. The paper considers a robust H ∞ tracking controller to control the piezoelectric actuator. The controller is designed using an uncertain system model. Simulation results show that the controller can significantly reduce the effect of the hysteresis nonlinearity.

[1]  S. Li-ning,et al.  Hysteresis and creep compensation for piezoelectric actuator in open-loop operation , 2005 .

[2]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[3]  L. Xie,et al.  Robust H^∞ Control for Linear Systems with Norm-Bounded Time-Varying Uncertainty , 1990 .

[4]  Lihua Xie,et al.  Robust H/sub infinity / control for linear systems with norm-bounded time-varying uncertainty , 1992 .

[5]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[6]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[7]  D. Dawson,et al.  Robust Tracking Control for a Piezoelectric Actuator , 2007, 2007 American Control Conference.

[8]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[9]  S.O.R. Moheimani,et al.  Resonant control of structural vibration using charge-driven piezoelectric actuators , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[10]  Hewon Jung,et al.  Tracking control of piezoelectric actuators , 2001 .

[11]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[12]  Lihua Xie,et al.  H/sub infinity / control and quadratic stabilization of systems with parameter uncertainty via output feedback , 1992 .

[13]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[14]  B. Anderson,et al.  A first prin-ciples solution to the nonsingular H control problem , 1991 .