CGS-19755 is neuroprotective during repetitive ischemia: This effect is significantly enhanced when combined with hypothermia

[1]  A. Shuaib,et al.  During Repetitive Forebrain Ischemia, Post-ischemic Hypothermia Protects Neurons from Damage , 1992, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[2]  A. Shuaib,et al.  Repetitive transient forebrain ischemia in gerbils: delayed neuronal damage in the substantia nigra reticulata , 1992, Brain Research.

[3]  L. Wilkins Clinical Trial of Nimodipine in Acute Ischemic Stroke , 1992 .

[4]  A. Gjedde,et al.  In Vivo Distribution of CGS‐19755 Within Brain in a Model of Focal Cerebral Ischemia , 1992, Journal of neurochemistry.

[5]  A. Hakim,et al.  The Effects of a Competitive NMDA Receptor Antagonist (CGS-19755) on Cerebral Blood Flow and pH in Focal Ischemia , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  F. Welsh,et al.  Postischemic Hypothermia Fails to Reduce Ischemic Injury in Gerbil Hippocampus , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  H. Hideaki,et al.  Amelioration of brain damage after focal ischemia in the rat by a novel inhibitor of lipid peroxidation , 1991 .

[8]  M. Dereski,et al.  Mild hypothermic intervention after graded ischemic stress in rats. , 1991, Stroke.

[9]  K. Kogure,et al.  Neuronal damage and calcium accumulation following repeated brief cerebral ischemia in the gerbil , 1990, Brain Research.

[10]  J. Grotta,et al.  CGS‐19755, A competitive NMDA receptor antagonist, reduces calcium‐calmodulin binding and improves outcome after global cerebral ischemia , 1990, Annals of neurology.

[11]  K. Kogure,et al.  Role of the excitotoxic mechanism in the development of neuronal damage following repeated brief cerebral ischemia in the gerbil: protective effects of MK-801 and pentobarbital , 1990, Brain Research.

[12]  J. Marler,et al.  High-dose intravenous naloxone for the treatment of acute ischemic stroke. , 1990, Stroke.

[13]  W. Pulsinelli,et al.  Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  P. Safar,et al.  Mild Cerebral Hypothermia during and after Cardiac Arrest Improves Neurologic Outcome in Dogs , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  D. Choi,et al.  The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. , 1990, Annual review of neuroscience.

[16]  H. Wagner,et al.  Cumulative effect of repeated ischemia on brain edema in the gerbil. Biochemical and physiological correlates of repeated ischemic insults. , 1990, Advances in neurology.

[17]  G. Clifton,et al.  Conditions for pharmacologic evaluation in the gerbil model of forebrain ischemia. , 1989, Stroke.

[18]  R. Busto,et al.  Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury , 1989, Neuroscience Letters.

[19]  M D Ginsberg,et al.  Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. , 1989, Stroke.

[20]  K. Kogure,et al.  Neuronal damage in the rat hippocampus in a new model of repeated reversible transient cerebral ischemia , 1989, Brain Research.

[21]  L. D'alecy,et al.  Protection from cerebral ischemia by brain cooling without reduced lactate accumulation in dogs. , 1989, Stroke.

[22]  J. Traber,et al.  Pharmacological basis for the use of nimodipine in central nervous system disorders , 1989, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  K. Kogure,et al.  Neuronal damage following repeated brief ischemia in the gerbil , 1989, Brain Research.

[24]  J. Nadler,et al.  Selective neuronal death after transient forebrain ischemia in the mongolian gerbil: A silver impregnation study , 1988, Neuroscience.

[25]  P. Scheinberg Controversies in the management of cerebral vascular disease , 1988, Neurology.

[26]  J. Mcculloch,et al.  The glutamate antagonist MK‐801 reduces focal ischemic brain damage in the rat , 1988, Annals of neurology.

[27]  P. Wood,et al.  CGS 19755 is a potent and competitive antagonist at NMDA-type receptors. , 1988, European journal of pharmacology.

[28]  G. Steinberg,et al.  Delayed treatment with dextromethorphan and dextrorphan reduces cerebral damage after transient focal ischemia , 1988, Neuroscience Letters.

[29]  J. Liebman,et al.  The N-methyl-d-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils , 1988, Brain Research.

[30]  P. Lyden,et al.  Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. , 1988, Archives of neurology.

[31]  T. Nowak,et al.  Experimental Model for Repetitive Ischemic Attacks in the Gerbil: The Cumulative Effect of Repeated Ischemic Insults , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  W. Dalton Dietrich,et al.  Small Differences in Intraischemic Brain Temperature Critically Determine the Extent of Ischemic Neuronal Injury , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[34]  Takaaki Kirino,et al.  Delayed neuronal death in the gerbil hippocampus following ischemia , 1982, Brain Research.

[35]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.

[36]  J. Wolff,et al.  A reliable method for demonstrating axonal degeneration shortly after axotomy. , 1980, Stain technology.

[37]  J. Wolff,et al.  A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous system. , 1980, Stain technology.

[38]  J D Michenfelder,et al.  The Effects of Anesthesia and Hypothermia on Canine Cerebral ATP and Lactate during Anoxia Produced by Decapitation , 1970, Anesthesiology.