The total quasi-steady-state approximation is valid for reversible enzyme kinetics.

[1]  D. V. Slyke,et al.  THE MODE OF ACTION OF UREASE AND OF ENZYMES IN GENERAL , 1914 .

[2]  G. Briggs,et al.  A Note on the Kinetics of Enzyme Action. , 1925, The Biochemical journal.

[3]  R. Alberty,et al.  Studies of the Enzyme Fumarase. VII.1 Series Solutions of Integrated Rate Equations for Irreversible and Reversible Michaelis-Menten Mechanisms2 , 1957 .

[4]  Robert A. Alberty,et al.  Kinetics of the Reversible Michaelis-Menten Mechanism and the Applicability of the Steady-state Approximation1 , 1958 .

[5]  William C. Davidon,et al.  Mathematical Models in Physical Sciences , 1964 .

[6]  R. Courant,et al.  Introduction to Calculus and Analysis , 1991 .

[7]  A. Sols,et al.  Concentrations of Metabolites and Binding Sites. Implications in Metabolic Regulation , 1970 .

[8]  L. Segel SIMPLIFICATION AND SCALING , 1972 .

[9]  A. Sols,et al.  Regulation of Escherichia coli phosphofructokinase in situ. , 1973, Biochemical and Biophysical Research Communications - BBRC.

[10]  J. Gancedo,et al.  Assay of yeast enzymes in situ. A potential tool in regulation studies. , 1973, European journal of biochemistry.

[11]  D. E. Atkinson Cellular Energy Metabolism and its Regulation , 1977 .

[12]  D Garfinkel,et al.  Systems analysis in enzyme kinetics. , 1977, CRC critical reviews in bioengineering.

[13]  M. Stayton,et al.  A computer analysis of the validity of the integrated Michaelis-Menten equation. , 1979, Journal of theoretical biology.

[14]  M. Schauer,et al.  Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction. , 1979, Journal of theoretical biology.

[15]  B. Mannervik,et al.  Reversal of the reaction catalyzed by glyoxalase I. Calculation of the equilibrium constant for the enzymatic reaction. , 1983, The Journal of biological chemistry.

[16]  B O Palsson,et al.  Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics. , 1984, Journal of theoretical biology.

[17]  L. Segel,et al.  On the validity of the steady state assumption of enzyme kinetics. , 1988, Bulletin of mathematical biology.

[18]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[19]  C Frieden,et al.  Numerical integration of rate equations by computer. , 1993, Trends in biochemical sciences.

[20]  R. Duggleby Product inhibition of reversible enzyme-catalysed reactions. , 1994, Biochimica et biophysica acta.

[21]  M. Roussel,et al.  Phase-plane geometries in enzyme kinetics , 1994 .

[22]  C. Cordeiro,et al.  Digitonin permeabilization of Saccharomyces cerevisiae cells for in situ enzyme assay. , 1995, Analytical biochemistry.

[23]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[24]  P. Kuzmič,et al.  Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. , 1996, Analytical biochemistry.

[25]  L. Segel,et al.  Extending the quasi-steady state approximation by changing variables. , 1996, Bulletin of mathematical biology.

[26]  C Frieden,et al.  New PC versions of the kinetic-simulation and fitting programs, KINSIM and FITSIM. , 1997, Trends in biochemical sciences.

[27]  S. Schnell,et al.  Closed Form Solution for Time-dependent Enzyme Kinetics , 1997 .

[28]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[29]  R. Duggleby,et al.  Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. , 1999, Biochimica et biophysica acta.

[30]  P. Maini,et al.  Enzyme kinetics at high enzyme concentration , 2000, Bulletin of mathematical biology.

[31]  T. Ellis,et al.  Explicit oxygen concentration expression for estimating extant biodegradation kinetics from respirometric experiments. , 2001, Biotechnology and bioengineering.

[32]  C. Cordeiro,et al.  In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. , 2001, European journal of biochemistry.

[33]  Hanna Parnas,et al.  Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices. , 2002, Biophysical journal.

[34]  A. Tzafriri,et al.  Michaelis-Menten kinetics at high enzyme concentrations , 2003, Bulletin of mathematical biology.