Isomorphic factorizations VIII: Bisectable trees

A tree is called even if its line set can be partitioned into two isomorphic subforests; it is bisectable if these forests are trees. The problem of deciding whether a given tree is even is known (Graham and Robinson) to be NP-hard. That for bisectability is now shown to have a polynomial time algorithm. This result is contained in the proof of a theorem which shows that if a treeS is bisectable then there is a unique treeT that accomplishes the bipartition. With the help of the uniqueness ofT and the observation that the bisection ofS into two copies ofT is unique up to isomorphism, we enumerate bisectable trees.