Uniform d-emulations of rings, with an application to distributed virtual ring construction

[1]  Stanislav Riha,et al.  A new proof of the theorem by Fleischner , 1991, J. Comb. Theory, Ser. B.

[2]  S. Sitharama Iyengar,et al.  An Efficient Distributed Depth-First-Search Algorithm , 1989, Inf. Process. Lett..

[3]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[4]  M. Cosnard,et al.  Parallel Processing: Proceedings of the Ifip Wg 10.3 Working Conference on Parallel Processing Pisa, Italy, 25-27 April 1988 , 1988 .

[5]  Yunzhou ZHU,et al.  A New Distributed Breadth-First-Search Algorithm , 1987, Inf. Process. Lett..

[6]  Jan van Leeuwen,et al.  Simulation of Large Networks on Smaller Networks , 1985, Inf. Control..

[7]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[8]  Dominique Gouyou-Beauchamps,et al.  The Hamiltonian Circuit Problem is Polynomial for 4-Connected Planar Graphs , 1982, SIAM J. Comput..

[9]  Ernest J. H. Chang,et al.  Echo Algorithms: Depth Parallel Operations on General Graphs , 1982, IEEE Transactions on Software Engineering.

[10]  John P. Fishburn,et al.  Quotient Networks , 1982, IEEE Transactions on Computers.

[11]  Ján Plesník,et al.  The NP-Completeness of the Hamiltonian Cycle Problem in Planar Digraphs with Degree Bound Two , 1979, Inf. Process. Lett..

[12]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[13]  Herbert Fleischner,et al.  Hamiltonian Cycles in Squares of Vertex-Unicyclic Graphs , 1976, Canadian Mathematical Bulletin.

[14]  H. Fleischner The square of every two-connected graph is Hamiltonian , 1974 .

[15]  J. Karaganis On the Cube of a Graph , 1968, Canadian Mathematical Bulletin.

[16]  Gerard Tel,et al.  Topics in distributed algorithms , 1991 .

[17]  Adrian Segall,et al.  Distributed network protocols , 1983, IEEE Trans. Inf. Theory.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  P. Rosenstiehl,et al.  INTELLIGENT GRAPHS: NETWORKS OF FINITE AUTOMATA CAPABLE OF SOLVING GRAPH PROBLEMS , 1972 .

[20]  W. T. Tutte A THEOREM ON PLANAR GRAPHS , 1956 .