H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors

A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility.

[1]  Yun Suk Huh,et al.  High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. , 2012, Nanoscale.

[2]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[3]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[4]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[5]  A. Lewandowski,et al.  Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes , 2010 .

[6]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[7]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[8]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[9]  S. Murugesan,et al.  Pulsed laser deposition of anatase and rutile TiO2 thin films , 2007 .

[10]  R. Ruoff,et al.  Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. , 2012, ACS nano.

[11]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[12]  Hongcai Gao,et al.  High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. , 2012, ACS applied materials & interfaces.

[13]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[14]  Xiao‐Qing Yang,et al.  Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes , 2009 .

[15]  H. Fan,et al.  Branched nanowires: Synthesis and energy applications , 2012 .

[16]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[17]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[18]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[19]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[20]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[21]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[22]  X. Zhao,et al.  Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes , 2012 .

[23]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[24]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[25]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[26]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS nano.

[27]  Chi-Hwan Han,et al.  All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes , 2012, Nanotechnology.

[28]  Song Jin,et al.  Potential applications of hierarchical branching nanowires in solar energy conversion , 2009 .

[29]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[30]  Jingwei Sun,et al.  Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution , 2008 .

[31]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.