On new scaling of dielectric response

We present a new generalized scaling relationship accounting for relaxation processes of both the real and the imaginary parts of the complex dielectric permittivity data in a wide temperature range of dielectric media. It has been successfully used for experimental data related to various dynamics in liquid crystalline phases of: 4-bromobenzylidene-4′-pentyloxyanilin, 4-bromobenzylidene-4′-hexyloxyaniline, 4′-butyl-4-(2-methylbutoxy) azoxybenzene, and 4-ethyl-4′-octylazoxybenzene. Moreover, the scaling was checked for the theoretical data of Dissado-Hill cluster model. A comparison with earlier scaling, proposed by Nagel and Dendzik, is given.

[1]  P. Lunkenheimer,et al.  Dielectric and far-infrared spectroscopy of glycerol , 1998 .

[2]  R. M. Hill,et al.  The fractal nature of the cluster model dielectric response functions , 1989 .

[3]  Nagel,et al.  Comment on "Scaling of the alpha relaxation in low-molecular-weight glass-forming liquids and polymers" , 1993, Physical review letters.

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  S. Nagel,et al.  High-frequency asymptotic shape of the primary relaxation in supercooled liquids , 1997 .

[6]  P. Lunkenheimer,et al.  Is There an Excess Wing in the Dielectric Loss of Plastic Crystals , 1999 .

[7]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[8]  J. Kumar,et al.  Fractional power-law spectral response of CaCu3Ti4O12 dielectric: Many-body effects , 2012, 1205.5692.

[9]  Alois Loidl,et al.  Relaxation dynamics in plastic crystals , 2002 .

[10]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[11]  S. Nagel,et al.  Wide-frequency dielectric susceptibility measurements in glycerol , 1992 .

[12]  Birge,et al.  Universal scaling of the relaxation near a model glass transition. , 1994, Physical review letters.

[13]  L. Singh,et al.  Study of secondary relaxation in disordered plastic crystals of isocyanocyclohexane, cyanocyclohexane, and 1-cyanoadamantane. , 2008, The Journal of chemical physics.

[14]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[15]  Dixon Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition. , 1990, Physical review. B, Condensed matter.

[16]  M. Massalska-arodź,et al.  Phase Behavior and Dynamics of the Liquid Crystal 4'-butyl-4-(2-methylbutoxy)azoxybenzene (4ABO5*). , 2014, The journal of physical chemistry. B.

[17]  K. Ngai,et al.  Rapidity of the Change of the Kohlrausch Exponent of the α-Relaxation of Glass-Forming Liquids at TB or Tβ and Consequences , 1999 .

[18]  Kremer,et al.  Scaling of the alpha relaxation in low-molecular-weight glass-forming liquids and polymers. , 1991, Physical review letters.

[19]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[20]  D. Vuillaume,et al.  Relaxation dynamics in covalently bonded organic monolayers on silicon , 2009, 0911.2920.

[21]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[22]  Wu,et al.  Scaling in the relaxation of supercooled liquids. , 1990, Physical review letters.

[23]  M. Paluch,et al.  LETTER TO THE EDITOR: On the universal scaling of the dielectric relaxation in dense media , 1997 .

[24]  E. Rössler,et al.  Spectral Shape of the α-Process in Supercooled Liquids Revisited , 1995 .

[25]  K. Ngai Dynamic and thermodynamic properties of glass-forming substances , 2000 .

[26]  Nagel,et al.  Evidence for a divergent susceptibility at the glass transition. , 1995, Physical review letters.

[27]  R. M. Hill,et al.  A cluster approach to the structure of imperfect materials and their relaxation spectroscopy , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  Wu Relaxation mechanisms in a benzyl chloride-toluene glass. , 1991, Physical review. B, Condensed matter.

[29]  A. Schönhals,et al.  Dielectric relaxation in polymeric solids Part 1. A new model for the interpretation of the shape of the dielectric relaxation function , 1989 .

[30]  Maria Massalska-Arodz,et al.  Correlations in a system with complex dynamics , 1999, Other Conferences.

[31]  S. Nagel,et al.  Relaxation spectroscopies of viscous liquids , 1991 .

[32]  Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation? , 2000, Physical review letters.

[33]  A. Schönhals,et al.  Dielectric relaxation in polymer solids Part 2: Application of the new model to polyurethane systems , 1989 .

[34]  A. Peláiz‐Barranco Modeling of dielectric relaxation response of ceramic/polymer composite based on lead titanate , 2006 .

[35]  S. Adichtchev,et al.  Evolution of the dynamic susceptibility of simple glass formers in the strongly supercooled regime , 2003 .

[36]  P. Lunkenheimer,et al.  Broadband dielectric spectroscopy on glass-forming propylene carbonate. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  E. Rössler,et al.  Reply to Comment on “Spectral shape of the α-process in supercooled liquids revisited” , 1996 .

[38]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .