Forks in the road, on the way to quantum gravity

In seeking to arrive at a theory of “quantum gravity,” one faces several choices among alternative approaches. I list some of these “forks in the road” and offer reasons for taking one alternative over the other. In particular, I advocate the following: the sum-over-histories framework for quantum dynamics over the “observable and state-vector” framework; relative probabilities over absolute ones; spacetime over space as the gravitational “substance” (4 over 3+1); a Lorentzian metric over a Riemannian (“Euclidean”) one; a dynamical topology over an absolute one; degenerate metrics over closed timelike curves to mediate topology change; “unimodular gravity” over the unrestricted functional integral; and taking a discrete underlying structure (the causal set) rather than the differentiable manifold as the basis of the theory. In connection with these choices, I also mention some results from unimodular quantum cosmology, sketch an account of the origin of black hole entropy, summarize an argument that the quantum mechanical measurement scheme breaks down for quantum field theory, and offer a reason why the cosmological constant of the present epoch might have a magnitude of around 10−120 in natural units.

[1]  R. G. Colodny,et al.  From quarks to quasars : philosophical problems of modern physics , 1986 .

[2]  David Finkelstein,et al.  Finite physics , 1988 .

[3]  P. Dirac Principles of Quantum Mechanics , 1982 .

[4]  A. Sakharov SPECIAL ISSUE: Cosmological transitions with changes in the signature of the metric , 1984 .

[5]  Paul Adrien Maurice Dirac,et al.  The theory of gravitation in Hamiltonian form , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  J. Zanelli Canonical Quantum Gravity , 1985 .

[7]  K. Thorne Closed timelike curves , 1992 .

[8]  Ron Koppelberger,et al.  Space and Time , 2021, Nature.

[9]  Karel V. Kuchař,et al.  TIME AND INTERPRETATIONS OF QUANTUM GRAVITY , 2011 .

[10]  Non-time-orientable lorentzian cobordism allows for pair creation , 1986 .

[11]  Michael S. Turner,et al.  The cosmological constant is back , 1995, astro-ph/9504003.

[12]  AN ANALYSIS OF THE REPRESENTATIONS OF THE MAPPING CLASS GROUP OF A MULTIGEON THREE-MANIFOLD , 1996, gr-qc/9605050.

[13]  Tony Leggett,et al.  Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy , 1988 .

[14]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[15]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[16]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[17]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[18]  S. Hawking The Density Matrix of the Universe , 1987 .

[19]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[20]  C. Isham An Introduction to General Topology and Quantum Topology , 1990 .

[21]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[22]  Rafael D. Sorkin Quantum Measure Theory and its Interpretation , 1995 .

[23]  S. Hawking The path-integral approach to quantum gravity , 1993 .

[24]  Donald H. Menzel,et al.  The Physical Principles of the Quantum Theory , 1949, Philosophy of Science.

[25]  D. Finkelstein “Superconducting” causal nets , 1988 .

[26]  R. Sorkin Spacetime and causal sets. , 1991 .

[27]  Gauge and parametrization dependencies of the one-loop counterterms in Einstein gravity , 1995, hep-th/9502152.

[28]  T. R. Ramadas,et al.  ASPECTS OF SPIN AND STATISTICS IN GENERALLY COVARIANT THEORIES , 1989 .

[29]  S. Hawking,et al.  Space-Time Foam , 1979 .

[30]  Unruh,et al.  Unimodular theory of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.

[31]  Sorkin Toward a proof of entropy increase in the presence of quantum black holes. , 1986, Physical review letters.

[32]  T. Lewis Geometry of Time and Space , 1936, Nature.

[33]  R. Sorkin CONSEQUENCES OF SPACETIME TOPOLOGY , 1990 .

[34]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[35]  W. Pauli,et al.  Theory Of Relativity , 1959 .

[36]  A. Messiah Quantum Mechanics , 1961 .

[37]  On the failure of the time-energy uncertainty principle , 1979 .

[38]  C. Teitelboim Proper-time gauge in the quantum theory of gravitation , 1983 .

[39]  B. Dewitt QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .

[40]  L. M. Blumenthal,et al.  Studies in geometry , 1972 .

[41]  R. Geroch,et al.  Topology in general relativity , 1967 .

[42]  A. Sen Gravity as a spin system , 1982 .

[43]  Rafael D. Sorkin Role of time in the sum-over-histories framework for gravity , 1994 .

[44]  R. Sorkin,et al.  A spin-statistics theorem for certain topological geons , 1996, gr-qc/9609064.

[45]  Samuel Fractional spin from gravity. , 1993, Physical review letters.

[46]  B. Riemann Über die Hypothesen, welche der Geometrie zu Grunde liegen , 1868 .

[47]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[48]  Rafael D. Sorkin,et al.  Complex actions in two-dimensional topology change , 1997 .

[49]  J. Bekenstein Statistical Black Hole Thermodynamics , 1975 .

[50]  J. Hartle,et al.  Integration contours for the no-boundary wave function of the universe. , 1990, Physical review. D, Particles and fields.

[51]  Friedman,et al.  Failure of unitarity for interacting fields on spacetimes with closed timelike curves. , 1992, Physical review. D, Particles and fields.

[52]  R. Geroch Einstein algebras , 1972 .

[53]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[54]  R. Sorkin Finitary substitute for continuous topology , 1991 .

[55]  S. Mandelstam FEYNMAN RULES FOR THE GRAVITATIONAL FIELD FROM THE COORDINATE INDEPENDENT FIELD THEORETIC FORMALISM , 1968 .

[56]  Dynamical triangulations, a gateway to quantum gravity? , 1995, hep-th/9503108.

[57]  Sorkin Topology change and monopole creation. , 1986, Physical review. D, Particles and fields.

[58]  Spacetime Quantum Mechanics and the Quantum Mechanics of Spacetime , 1993, gr-qc/9304006.

[59]  Carlo Rovelli,et al.  Loop space representation of quantum general relativity , 1988 .

[60]  C. Isham,et al.  Quantum norm theory and the quantisation of metric topology , 1990 .

[61]  R. Penrose Gravity and quantum mechanics , 1993 .

[62]  Rafael D. Sorkin,et al.  Initial conditions and unitarity in unimodular quantum cosmology , 1993 .

[63]  H. Reichenbach,et al.  Axiomatization of the Theory of Relativity , 1969 .

[64]  Rafael D. Sorkin,et al.  A sum-over-histories account of an EPR(B) experiment , 1991 .

[65]  Rafael D. Sorkin Impossible Measurements on Quantum Fields , 1956 .

[66]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[67]  C. Isham Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.

[68]  R. Feynman Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[69]  Arlen Anderson,et al.  Does the topology of space fluctuate? , 1986 .

[70]  David C. Kay On metric geometry , 1964 .

[71]  R. Sorkin On the Entropy of the Vacuum Outside a Horizon , 2014, 1402.3589.

[72]  R. Sorkin Quantum mechanics as quantum measure theory , 1994, gr-qc/9401003.

[73]  R. Sorkin Classical Topology and Quantum Phases: Quantum Geons , 1989 .