The Traveling Salesman Problem with Few Inner Points

We propose two algorithms for the planar Euclidean traveling salesman problem. The first runs in O(k!kn) time and O(k) space, and the second runs in O(2^kk^2n) time and O(2^kkn) space, where n denotes the number of input points and k denotes the number of points interior to the convex hull.

[1]  Robert Sedgewick,et al.  Permutation Generation Methods , 1977, CSUR.

[2]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[3]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[4]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[5]  Egon Balas,et al.  The prize collecting traveling salesman problem , 1989, Networks.

[6]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[7]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[8]  Günter Rote,et al.  The Convex-Hull-and-Line Traveling Salesman Problem: A Solvable Case , 1994, Inf. Process. Lett..

[9]  S B MitchellJoseph Guillotine Subdivisions Approximate Polygonal Subdivisions , 1999 .

[10]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[11]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[12]  Gerhard J. Woeginger,et al.  The Traveling Salesman Problem with Few Inner Points , 2004, COCOON.

[13]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[14]  M. M. Flood The Traveling-Salesman Problem , 1956 .

[15]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[16]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[17]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[18]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[19]  Gerhard J. Woeginger,et al.  The Convex-Hull-and-k-Line Travelling Salesman Problem , 1996, Inf. Process. Lett..

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  Richard C. T. Lee,et al.  The searching over separators strategy to solve some NP-hard problems in subexponential time , 1993, Algorithmica.

[22]  Michael Hoffmann,et al.  The minimum weight triangulation problem with few inner points , 2006, Comput. Geom..

[23]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[24]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[25]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..