Explicit Reformulations for Robust Optimization Problems with General Uncertainty Sets

We consider a rather general class of mathematical programming problems with data uncertainty, where the uncertainty set is represented by a system of convex inequalities. We prove that the robust counterparts of this class of problems can be reformulated equivalently as finite and explicit optimization problems. Moreover, we develop simplified reformulations for problems with uncertainty sets defined by convex homogeneous functions. Our results provide a unified treatment of many situations that have been investigated in the literature and are applicable to a wider range of problems and more complicated uncertainty sets than those considered before. The analysis in this paper makes it possible to use existing continuous optimization algorithms to solve more complicated robust optimization problems. The analysis also shows how the structure of the resulting reformulation of the robust counterpart depends both on the structure of the original nominal optimization problem and on the structure of the uncertainty set.

[1]  Igor Averbakh Minmax regret linear resource allocation problems , 2004, Oper. Res. Lett..

[2]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[3]  Garud Iyengar,et al.  Ambiguous chance constrained problems and robust optimization , 2006, Math. Program..

[4]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[5]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[6]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[7]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[8]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[9]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[10]  Mustafa Ç. Pinar,et al.  Robust profit opportunities in risky financial portfolios , 2005, Oper. Res. Lett..

[11]  R. Jagannathan,et al.  Technical Note - Minimax Procedure for a Class of Linear Programs under Uncertainty , 1977, Oper. Res..

[12]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[13]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[14]  Pascal J. Maenhout Robust Portfolio Rules and Asset Pricing , 2004 .

[15]  J. Dupacová The minimax approach to stochastic programming and an illustrative application , 1987 .

[16]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[17]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[18]  Larry G. Epstein,et al.  Learning Under Ambiguity , 2002 .

[19]  Alexander Shapiro,et al.  On a Class of Minimax Stochastic Programs , 2004, SIAM J. Optim..

[20]  Melvyn Sim,et al.  Tractable Approximations to Robust Conic Optimization Problems , 2006, Math. Program..

[21]  Alexander Shapiro,et al.  Minimax analysis of stochastic problems , 2002, Optim. Methods Softw..

[22]  Zhenyu Wang,et al.  A Shrinkage Approach to Model Uncertainty and Asset Allocation , 2005 .

[23]  A. L. Soyster,et al.  Technical Note - A Duality Theory for Convex Programming with Set-Inclusive Constraints , 1974, Oper. Res..

[24]  Donald Goldfarb,et al.  Robust convex quadratically constrained programs , 2003, Math. Program..

[25]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[26]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[27]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[28]  Jitka Dupacová,et al.  Stochastic Programming: Minimax Approach , 2009, Encyclopedia of Optimization.

[29]  Yin Zhang General Robust-Optimization Formulation for Nonlinear Programming , 2007 .

[30]  L El Ghaoui,et al.  ROBUST SOLUTIONS TO LEAST-SQUARE PROBLEMS TO UNCERTAIN DATA MATRICES , 1997 .

[31]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[32]  Kees Roos,et al.  Robust Solutions of Uncertain Quadratic and Conic-Quadratic Problems , 2002, SIAM J. Optim..

[33]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[34]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[35]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[36]  Melvyn Sim,et al.  Robust Discrete Optimization , 2003 .

[37]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..