r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows

Abstract. r.avaflow represents an innovative open-source computational tool for routing rapid mass flows, avalanches, or process chains from a defined release area down an arbitrary topography to a deposition area. In contrast to most existing computational tools, r.avaflow (i) employs a two-phase, interacting solid and fluid mixture model (Pudasaini, 2012); (ii) is suitable for modelling more or less complex process chains and interactions; (iii) explicitly considers both entrainment and stopping with deposition, i.e. the change of the basal topography; (iv) allows for the definition of multiple release masses, and/or hydrographs; and (v) serves with built-in functionalities for validation, parameter optimization, and sensitivity analysis. r.avaflow is freely available as a raster module of the GRASS GIS software, employing the programming languages Python and C along with the statistical software R. We exemplify the functionalities of r.avaflow by means of two sets of computational experiments: (1) generic process chains consisting in bulk mass and hydrograph release into a reservoir with entrainment of the dam and impact downstream; (2) the prehistoric Acheron rock avalanche, New Zealand. The simulation results are generally plausible for (1) and, after the optimization of two key parameters, reasonably in line with the corresponding observations for (2). However, we identify some potential to enhance the analytic and numerical concepts. Further, thorough parameter studies will be necessary in order to make r.avaflow fit for reliable forward simulations of possible future mass flow events.

[1]  E. F. Toro,et al.  Riemann problems and the WAF method for solving the two-dimensional shallow water equations , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[3]  D. Rickenmann,et al.  Erosion by debris flows in field and laboratory experiments , 2003 .

[4]  Wolfgang Fellin,et al.  Multivariate parameter optimization for computational snow avalanche simulation , 2015, Journal of Glaciology.

[5]  J. McElwaine,et al.  Shallow two-component gravity-driven flows with vertical variation , 2013, Journal of Fluid Mechanics.

[6]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[7]  E. Bruce Pitman,et al.  A Model for Granular Flows over an Erodible Surface , 2009, SIAM J. Appl. Math..

[8]  Michael Becht,et al.  Modeling of geomorphic processes in an alpine catchment , 2005 .

[9]  L. F. Smoll,et al.  Investigation of the origin and magnitude of debris flows from the Payhua Creek basin, Matucana area, Huarochirí Province, Perú , 2005 .

[10]  D. L. George,et al.  Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster , 2016 .

[11]  S. Pudasaini A general two-phase debris flow model , 2012 .

[12]  S. Pudasaini,et al.  Rapid shear flows of dry granular masses down curved and twisted channels , 2003, Journal of Fluid Mechanics.

[13]  Aronne Armanini,et al.  Two-dimensional simulation of debris flows in erodible channels , 2009, Comput. Geosci..

[14]  Markus Neteler,et al.  Open Source GIS: A GRASS GIS Approach , 2007 .

[15]  Khim B. Khattri,et al.  Landslide-generated tsunami and particle transport in mountain lakes and reservoirs , 2016, Annals of Glaciology.

[16]  K. Lied,et al.  Empirical Calculations of Snow–Avalanche Run–out Distance Based on Topographic Parameters , 1980 .

[17]  Randall J. LeVeque,et al.  The GeoClaw software for depth-averaged flows with adaptive refinement , 2010, 1008.0455.

[18]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[19]  Qilong Zhai,et al.  A hybridized weak Galerkin finite element scheme for the Stokes equations , 2015, Science China Mathematics.

[20]  Farrokh Nadim,et al.  Landslide Hazard and Risk Assessment in El Salvador , 2013 .

[21]  M. Pastor,et al.  A depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena , 2009 .

[22]  Andreas Kääb,et al.  The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery , 2005 .

[23]  Oldrich Hungr,et al.  Estimating landslide motion mechanism, travel distance and velocity , 2005 .

[24]  Martin Mergili,et al.  r.randomwalk v1, a multi-functional conceptual tool for mass movement routing , 2015 .

[25]  M. McSaveney,et al.  The Acheron rock avalanche, Canterbury, New Zealand—morphology and dynamics , 2006 .

[26]  Michel Jaboyedoff,et al.  Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale , 2013 .

[27]  S. Hergarten,et al.  Modelling rapid mass movements using the shallow water equations in Cartesian coordinates , 2015 .

[28]  J. Godt,et al.  Entrainment of bed sediment by debris flows: results from large-scale experiments , 2011 .

[29]  Marc Christen,et al.  Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results , 2010, Annals of Glaciology.

[30]  Yongqi Wang,et al.  Modelling debris flows down general channels , 2005 .

[31]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[32]  Rolf Katzenbach,et al.  Avalanching granular flows down curved and twisted channels: Theoretical and experimental results , 2008 .

[33]  S. Evans,et al.  A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970 , 2009 .

[34]  Khim B. Khattri,et al.  Simulating glacial lake outburst floods with a two-phase mass flow model , 2016, Annals of Glaciology.

[35]  Scott McDougall,et al.  Dynamic modelling of entrainment in rapid landslides , 2005 .

[36]  J. Fischer A novel approach to evaluate and compare computational snow avalanche simulation , 2013 .

[37]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[38]  Scott McDougall,et al.  Two numerical models for landslide dynamic analysis , 2009, Comput. Geosci..

[39]  Richard M. Iverson,et al.  Elementary theory of bed‐sediment entrainment by debris flows and avalanches , 2012 .

[40]  Valter Ulderico Dragoni,et al.  ITALIAN JOURNAL of ENGINEERING GEOLOGY and ENVIRONMENT-SPECIAL ISSUE ON GEOITALIA2005 - V FIST FORUM (SPOLETO, 21-23 SEPTEMBER 2005) , 2008 .

[41]  P. O. Boks,et al.  Empirical Calculations of Snow–Avalanche Run–out Distance Based on Topographic Parameters , 1980, Journal of Glaciology.

[42]  Jean-Pierre Vilotte,et al.  Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme , 2003 .

[43]  Hervé Capart,et al.  Riemann wave description of erosional dam-break flows , 2002, Journal of Fluid Mechanics.

[44]  R. Soeters,et al.  Landslide hazard and risk zonation—why is it still so difficult? , 2006 .

[45]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[46]  Kolumban Hutter,et al.  Shock-capturing and front-tracking methods for granular avalanches , 2015, 1501.04756.

[47]  Long Le,et al.  A two-fluid model for avalanche and debris flows , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  K. Hutter,et al.  Important aspects in the formulation of solid–fluid debris-flow models. Part I. Thermodynamic implications , 2010 .

[49]  O. Hungr,et al.  Landslide Risk Management , 2005 .

[50]  Giovanna Capparelli,et al.  Evaluating performance of simplified physically based models for shallow landslide susceptibility , 2015 .

[51]  Scott McDougall,et al.  Entrainment of material by debris flows , 2005 .

[52]  Giovanni B. Crosta,et al.  Numerical modelling of entrainment/deposition in rock and debris-avalanches , 2009 .

[53]  Richard M. Iverson,et al.  Surge dynamics coupled to pore-pressure evolution in debris flows , 2003 .

[54]  K. Hutter,et al.  Important aspects in the formulation of solid–fluid debris-flow models. Part II. Constitutive modelling , 2010 .

[55]  I. Marchesini,et al.  A strategy for GIS-based 3-D slope stability modelling over large areas , 2014 .

[56]  Kolumban Hutter,et al.  Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches , 2016 .

[57]  O. Hungr,et al.  A model for the analysis of rapid landslide motion across three-dimensional terrain , 2004 .

[58]  Allen Bateman,et al.  Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula , 2008 .

[59]  S. Pudasaini,et al.  A two‐phase mechanical model for rock‐ice avalanches , 2014 .

[60]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[61]  S. Pudasaini Dynamics of submarine debris flow and tsunami , 2014 .

[62]  Wolfgang Fellin,et al.  Physically-based modelling of granular flows with Open Source GIS , 2012 .

[63]  S. Pudasaini,et al.  A mechanical erosion model for two-phase mass flows , 2016, International Journal of Multiphase Flow.

[64]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[65]  Kolumban Hutter,et al.  The Savage‐Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud , 2004 .

[66]  A. Patra,et al.  Computing granular avalanches and landslides , 2003 .

[67]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[68]  C. F. Lee,et al.  Erosional effects on runout of fast landslides, debris flows , 2006 .

[69]  Oldrich Hungr,et al.  Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism , 2004 .

[70]  M. Pastor,et al.  Numerical study on the entrainment of bed material into rapid landslides , 2012 .

[71]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[72]  Jan-Thomas Fischer,et al.  Topographic curvature effects in applied avalanche modeling , 2012 .

[73]  Brian W. McArdell,et al.  Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities , 2011 .

[74]  Richard M. Iverson,et al.  Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation , 2004 .

[75]  Jean-Pierre Vilotte,et al.  On the use of Saint Venant equations to simulate the spreading of a granular mass , 2005 .

[76]  P. Burlando,et al.  Field experiments and numerical modeling of mass entrainment in snow avalanches , 2006 .