Unshared Secret Key Cryptography

Current security techniques can be implemented with either secret key exchange or physical-layer wiretap codes. In this paper, we investigate an alternative solution for MIMO wiretap channels. Inspired by the artificial noise (AN) technique, we propose the unshared secret key (USK) cryptosystem, where the AN is redesigned as a one-time pad secret key aligned within the null space between a transmitter and a legitimate receiver. The proposed USK cryptosystem is a new physical-layer cryptographic scheme, which was obtained by combining traditional network-layer cryptography and physical-layer security. Unlike previously studied AN techniques, rather than ensuring nonzero secrecy capacity, the USK is valid for an infinite lattice input alphabet and guarantees Shannon's ideal secrecy and perfect secrecy without the need for secret key exchange. We then show how ideal secrecy can be obtained for finite lattice constellations with an arbitrarily small outage.

[1]  Hesham El Gamal,et al.  On the Secrecy Capacity of Fading Channels , 2006, 2007 IEEE International Symposium on Information Theory.

[2]  A. Dasgupta Asymptotic Theory of Statistics and Probability , 2008 .

[3]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[4]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[5]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[6]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[7]  S. Schor STATISTICS: AN INTRODUCTION. , 1965, The Journal of trauma.

[8]  Daniele Micciancio,et al.  Improving Lattice Based Cryptosystems Using the Hermite Normal Form , 2001, CaLC.

[9]  A. Lee Swindlehurst,et al.  Solutions for the MIMO Gaussian Wiretap Channel With a Cooperative Jammer , 2011, IEEE Transactions on Signal Processing.

[10]  E. Lukács,et al.  A Property of the Normal Distribution , 1954 .

[11]  Cong Ling,et al.  Semantically Secure Lattice Codes for the Gaussian Wiretap Channel , 2012, IEEE Transactions on Information Theory.

[12]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[13]  John M. Shea,et al.  Secret-Sharing LDPC Codes for the BPSK-Constrained Gaussian Wiretap Channel , 2011, IEEE Transactions on Information Forensics and Security.

[14]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[15]  Matthew R. McKay,et al.  Enhancing Secrecy With Multi-Antenna Transmission in Wireless Ad Hoc Networks , 2013, IEEE Transactions on Information Forensics and Security.

[16]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[17]  Yi Hong,et al.  On Measures of Information Theoretic Security (Invited Paper) , 2014 .

[18]  R. Zamir Lattices are everywhere , 2009, 2009 Information Theory and Applications Workshop.

[19]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[20]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[21]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[22]  Matthew R. McKay,et al.  Secure Transmission With Artificial Noise Over Fading Channels: Achievable Rate and Optimal Power Allocation , 2010, IEEE Transactions on Vehicular Technology.

[23]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[24]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[25]  Yi Hong,et al.  Practical Secrecy using Artificial Noise , 2013, IEEE Communications Letters.

[26]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[27]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[28]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[29]  A. Lee Swindlehurst,et al.  A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation , 2005, IEEE Transactions on Communications.

[30]  Miklós Ajtai,et al.  Random lattices and a conjectured 0 - 1 law about their polynomial time computable properties , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[31]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[32]  A. Falahati,et al.  Combination of turbo coding and cryptography in NONGEO satellite communication systems , 2008, 2008 International Symposium on Telecommunications.

[33]  Rohit Negi,et al.  Guaranteeing Secrecy using Artificial Noise , 2008, IEEE Transactions on Wireless Communications.

[34]  H. Vincent Poor,et al.  The Gaussian wiretap channel with a helping interferer , 2008, 2008 IEEE International Symposium on Information Theory.

[35]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[36]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[37]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[38]  P. Geffe,et al.  Secrecy systems approximating perfect and ideal secrecy , 1965 .

[39]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.