Modeling Breast Cancer Using Data Mining Methods

1 . صصختم یژولوکناویدار ، ، رایداتسا کشزپ مولع هاگشناد ی ح تبرت ی رد ی ه هیردیح تبرت ، ناریا ، 2 . هیردیح تبرت ،هیردیح تبرت یکشزپ مولع هاگشناد ،ییوجشناد تاقیقحت هتیمک ،رتویپماک سانشراک ناریا ، 3 وجشناد . ی رتکد ی پماک ی رتو پماک و قرب هدکشناد ، ی ،رتو ملاسا دازآ هاگشناد ،لامش نارهت دحاو ی ، ا ،نارهت ی نار 4 . رایداتسا ،رتویپماک یرتکد پماک هورگ ی ،رتو پماک و قرب هدکشناد ی ،رتو ملاسا دازآ هاگشناد ،لامش نارهت دحاو ی ، ا ،نارهت ی نار 5 . ،رایداتسا ، رتویپماک یرتکد پماک و قرب هورگ ی ،رتو ح تبرت هاگشناد ی رد ی ،ه ح تبرت ی رد ی ،ه وضر ناسارخ ی ، ا ی نار

[1]  Tshilidzi Marwala,et al.  Bayesian Training of Neural Networks Using Genetic Programming , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[2]  E. Hatefnia,et al.  THE EFFECTS OF “THEORY OF PLANNED BEHAVIOR” BASED EDUCATION ON THE PROMOTION OF MAMMOGRAPHY PERFORMANCE IN EMPLOYED WOMEN , 2010 .

[3]  Morteza Analoui,et al.  Breast Cancer Detection from FNA Using SVM and RBF Classifier , 2007 .

[5]  Zhi-Hua Zhou,et al.  Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble , 2003, IEEE Transactions on Information Technology in Biomedicine.

[6]  Mollazadeh Javad,et al.  STUDY OF DIFFICULTY IN EMOTION REGULATION AS A PREDICTOR OF INCIDENCE AND SEVERITY OF NAUSEA AND VOMITING IN BREAST CANCER PATIENTS , 2015 .

[7]  S. George,et al.  Patient-reported upper extremity outcome measures used in breast cancer survivors: a systematic review. , 2014, Archives of physical medicine and rehabilitation.

[8]  Haddadnia Javad,et al.  A Novel Smart System for Mammographic Image Classification Based on Breast Density , 2013 .

[9]  Mohamad Amin Pourhoseingholi,et al.  Burden of Breast Cancer in Iranian Women is Increasing. , 2015, Asian Pacific journal of cancer prevention : APJCP.

[10]  L. V. Nandakishore,et al.  KNOWLEDGE BASED ANALYSIS OF VARIOUS STATISTICAL TOOLS IN DETECTING BREAST CANCER , 2011 .

[11]  Steven A. Rosenberg,et al.  Cancer: Principles & Practice of Oncology: Annual Advances in Oncology , 2012 .

[12]  A. A. Safavi,et al.  Predicting breast cancer survivability using data mining techniques , 2010, 2010 2nd International Conference on Software Technology and Engineering.

[13]  Sushmita Mitra,et al.  Neuro-fuzzy rule generation: survey in soft computing framework , 2000, IEEE Trans. Neural Networks Learn. Syst..

[14]  Tetsuya Nakamura,et al.  Biological markers of invasive breast cancer. , 2015, Japanese journal of clinical oncology.

[15]  M. Akbari,et al.  Five and Ten Years Survival in Breast Cancer Patients Mastectomies vs. Breast Conserving Surgeries Personal Experience , 2008 .

[16]  Vivian West,et al.  Computing, Artificial Intelligence and Information Technology Ensemble strategies for a medical diagnostic decision support system: A breast cancer diagnosis application , 2005 .

[17]  Mohammad Saniee Abadeh,et al.  Parallel fuzzy rule learning using an ACO-based algorithm for medical data mining , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).