Hybrid gait pattern generator capable of rapid and dynamically consistent pattern regeneration

We propose a two-stage gait pattern generation scheme for the full-scale humanoid robots, that considers the dynamics of the system throughout the process. The fist stage is responsible for generating the preliminary motion reference, such as step position, timing and trajectory of Center of Mass (CoM), while the second stage serves as dynamics filter which employs a multi-body model and based on Zero Moment Point (ZMP) reference trajectory generates CoM reference trajectory which defines a locomotion stable when executed on the full-scale multi-degree-of-freedom humanoid robot. The approach thanks to introducing a dynamic model at the stage of feet placement planning provides the ZMP reference, which is ensured to be feasible for the robot. Thanks to the fact it enables instantaneous regeneration of motion. The paper contains description of two approaches used in the first and second stage, as well as experimental results proving the effectiveness of the method. The fast calculation time and the use of the system's dynamic state as initial conditions for pattern generation makes it a good candidate for the real-time gait pattern generator.

[1]  Pierre-Brice Wieber,et al.  Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[2]  Sergey V. Drakunov,et al.  Capture Point: A Step toward Humanoid Push Recovery , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[3]  Alin Albu-Schäffer,et al.  Bipedal walking control based on Capture Point dynamics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  Nicolas Jouandeau,et al.  Walking patterns for real time path planning simulation of humanoids , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[7]  Satoshi Kagami,et al.  An adaptive action model for legged navigation planning , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[8]  Shuuji Kajita,et al.  Real-time 3D walking pattern generation for a biped robot with telescopic legs , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Tomomichi Sugihara,et al.  Self-consistent automatic navigation of COM and feet for realtime humanoid robot steering , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Shuuji Kajita,et al.  An analytical method on real-time gait planning for a humanoid robot , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[12]  Shuuji Kajita,et al.  Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[13]  Satoshi Kagami,et al.  Strategies for adjusting the ZMP reference trajectory for maintaining balance in humanoid walking , 2010, 2010 IEEE International Conference on Robotics and Automation.

[14]  Masayuki Inaba,et al.  Online humanoid walking control system and a moving goal tracking experiment , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).