Accessing Rapidly Scanning Swept Laser Source Instantaneous Spectral Width Using a Multimode Rate Equation Model

In this paper, we present a multimode rate equation model for rapidly scanning swept laser source. The model accounts for the dynamics of a semiconductor-based swept laser source in a ring configuration. The instantaneous spectral width of the laser during sweeping is calculated through wavelength- and time-dependent cavity loss model. The various factors affecting the instantaneous spectral width are studied including the effect of the semiconductor optical amplifier gain spectrum and the filter scanning speed. The model also allows monitoring the evolution of the cavity modes in the time domain as the filter scans. It shows that the instantaneous spectral width is a multifolded property affected by the filter scanning speed and spectral width, the SOA gain spectrum, and other parameters.

[1]  A. M. Melo,et al.  Nonlinear applications of semiconductor optical amplifiers for all-optical networks , 2007 .

[2]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[3]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[4]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[5]  J. Leuthold,et al.  Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model , 2000 .

[6]  M. O'Mahony Semiconductor laser optical amplifiers for use in future fiber systems , 1988 .

[7]  S. Yun,et al.  Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications. , 2006, Optics letters.

[8]  Yasser M. Sabry,et al.  Deeply-Etched Optical MEMS Tunable Filter for Swept Laser Source Applications , 2014, IEEE Photonics Technology Letters.

[9]  R. Huber,et al.  Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers. , 2010, Optics letters.

[10]  Nonlinear Attosecond Metrology by Intense Isolated Attosecond Pulses , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  H. Fujita,et al.  A high speed MEMS scanner for 140-kHz SS-OCT , 2011, 16th International Conference on Optical MEMS and Nanophotonics.

[12]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[13]  Michael J. Adams,et al.  Performance predictions from a new optical amplifier model , 1985 .

[14]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[15]  A. Willner,et al.  Real-time optical spectrum analysis of a light source using a polarimeter. , 2008, Optics express.

[16]  Yasser M. Sabry,et al.  Wideband Subwavelength Deeply Etched Multilayer Silicon Mirrors for Tunable Optical Filters and SS-OCT Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[18]  A. Morosawa,et al.  Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. , 2008, Optics express.

[19]  Chi Zhang,et al.  CORRIGENDUM: Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation , 2014, Scientific reports.

[20]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[21]  J. Fujimoto,et al.  Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.

[22]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[23]  Wang-Yuhl Oh,et al.  SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  William Shieh,et al.  Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability , 1995 .

[25]  G. Agrawal,et al.  Self-Phase Modulation in Semiconductor Optical Amplifiers: Impact of Amplified Spontaneous Emission , 2010, IEEE Journal of Quantum Electronics.

[26]  N. Dutta,et al.  Semiconductor Lasers , 1993 .

[27]  Alexandre Poulin,et al.  Tunable Fiber Laser Using a MEMS-Based in Plane Fabry-Pérot Filter , 2010, IEEE Journal of Quantum Electronics.

[28]  T. L. Myers,et al.  Real-time trace gas sensing of fluorocarbons using a swept-wavelength external cavity quantum cascade laser. , 2014, The Analyst.

[29]  C. Burrus,et al.  Short-cavity InGaAsP injection lasers: Dependence of mode spectra and single-longitudinal-mode power on cavity length , 1982 .