A Five-Level Design Framework for Bicluster Visualizations

Analysts often need to explore and identify coordinated relationships (e.g., four people who visited the same five cities on the same set of days) within some large datasets for sensemaking. Biclusters provide a potential solution to ease this process, because each computed bicluster bundles individual relationships into coordinated sets. By understanding such computed, structural, relations within biclusters, analysts can leverage their domain knowledge and intuition to determine the importance and relevance of the extracted relationships for making hypotheses. However, due to the lack of systematic design guidelines, it is still a challenge to design effective and usable visualizations of biclusters to enhance their perceptibility and interactivity for exploring coordinated relationships. In this paper, we present a five-level design framework for bicluster visualizations, with a survey of the state-of-the-art design considerations and applications that are related or that can be applied to bicluster visualizations. We summarize pros and cons of these design options to support user tasks at each of the five-level relationships. Finally, we discuss future research challenges for bicluster visualizations and their incorporation into visual analytics tools.

[1]  Harri Siirtola,et al.  Interacting with parallel coordinates , 2006, Interact. Comput..

[2]  Chris North,et al.  The role of interactive biclusters in sensemaking , 2014, CHI.

[3]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[4]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[5]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[6]  John T. Stasko,et al.  Combining Computational Analyses and Interactive Visualization for Document Exploration and Sensemaking in Jigsaw , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Roded Sharan,et al.  Biclustering Algorithms: A Survey , 2007 .

[8]  Hong Zhou,et al.  Splatting the Lines in Parallel Coordinates , 2009, Comput. Graph. Forum.

[9]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  Helwig Hauser,et al.  Parallel Sets: interactive exploration and visual analysis of categorical data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[11]  Frank van Harmelen,et al.  Ontology-Based Information Visualization: Toward Semantic Web Applications , 2006, Visualizing the Semantic Web, 2nd Edition.

[12]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[13]  T. M. Murali,et al.  Compositional mining of multirelational biological datasets , 2008, TKDD.

[14]  Michael Burch,et al.  BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data , 2011, ISVC.

[15]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[17]  Joana P Gonçalves,et al.  BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data , 2009, BMC Research Notes.

[18]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[19]  Eckart Zitzler,et al.  BicAT: a biclustering analysis toolbox , 2006, Bioinform..

[20]  Andreas Noack,et al.  An Energy Model for Visual Graph Clustering , 2003, GD.

[21]  Georges G. Grinstein,et al.  A survey of visualizations for high-dimensional data mining , 2001 .

[22]  Anastasia Bezerianos,et al.  Evolutionary visual exploration: experimental analysis of algorithm behaviour , 2013, GECCO.

[23]  Min Chen,et al.  Conceptualizing Visual Uncertainty in Parallel Coordinates , 2012, Comput. Graph. Forum.

[24]  Suzi Adams,et al.  Visual exploration of microbial populations , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[25]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  Dieter Schmalstieg,et al.  enRoute: Dynamic path extraction from biological pathway maps for in-depth experimental data analysis , 2012, 2012 IEEE Symposium on Biological Data Visualization (BioVis).

[27]  Philippe Castagliola,et al.  A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations , 2004 .

[28]  Gennady Andrienko,et al.  Blending Aggregation and Selection: Adapting Parallel Coordinates for the Visualization of Large Datasets , 2005 .

[29]  T. M. Murali,et al.  Automatic layout and visualization of biclusters , 2006, Algorithms for Molecular Biology.

[30]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[31]  Martin Graham,et al.  Using curves to enhance parallel coordinate visualisations , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[32]  P. Pirolli,et al.  The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis , 2007 .

[33]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[34]  L. Carlson,et al.  Spatial Reasoning , 2010 .

[35]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[36]  Roberto Therón,et al.  BicOverlapper: A tool for bicluster visualization , 2008, Bioinform..

[37]  Anastasia Bezerianos,et al.  Evolutionary Visual Exploration: Evaluation With Expert Users , 2013, Comput. Graph. Forum.

[38]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[39]  Ingo Hotz,et al.  iPCA : An Interactive System for PCA-based Visual Analytics , 2008 .

[40]  Chris North,et al.  Semantic interaction for visual text analytics , 2012, CHI.

[41]  Mats Lind,et al.  Perceiving Patterns in Parallel Coordinates: Determining Thresholds for Identification of Relationships , 2008, Inf. Vis..

[42]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[43]  Partha S. Vasisht Computational Analysis of Microarray Data , 2003 .

[44]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[45]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[46]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[47]  Yuanzhen Li,et al.  Measuring visual clutter. , 2007, Journal of vision.

[48]  Catherine Plaisant,et al.  NetLens: Iterative Exploration of Content-Actor Network Data , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[49]  Ye Zhao,et al.  Tile-based parallel coordinates and its application in financial visualization , 2010, Electronic Imaging.

[50]  T. J. Jankun-Kelly,et al.  An interactive parallel coordinates technique applied to a tropical cyclone climate analysis , 2009, Comput. Geosci..

[51]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[52]  Ben Shneiderman,et al.  Interactively Exploring Hierarchical Clustering Results , 2003 .

[53]  Thomas Ruddy ARTICLE IN PRESS , 2004 .

[54]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[55]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[56]  Mohammed J. Zaki,et al.  Efficient algorithms for mining closed itemsets and their lattice structure , 2005, IEEE Transactions on Knowledge and Data Engineering.

[57]  Chun-Houh Chen,et al.  GAP: A graphical environment for matrix visualization and cluster analysis , 2010, Comput. Stat. Data Anal..

[58]  Hiroki Arimura,et al.  LCM: An Efficient Algorithm for Enumerating Frequent Closed Item Sets , 2003, FIMI.

[59]  Bob Carpenter,et al.  Phrasal Queries with LingPipe and Lucene: Ad Hoc Genomics Text Retrieval , 2004, TREC.

[60]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[61]  Sushmita Mitra,et al.  Multi-objective evolutionary biclustering of gene expression data , 2006, Pattern Recognit..

[62]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[63]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[64]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[65]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[66]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[67]  Christopher Leckie,et al.  A survey of coordinated attacks and collaborative intrusion detection , 2010, Comput. Secur..

[68]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[69]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[70]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[71]  Roberto Therón,et al.  A Framework to Analyze Biclustering Results on Microarray Experiments , 2007, IDEAL.

[72]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[73]  Chris North,et al.  Observation-level interaction with statistical models for visual analytics , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[74]  Christopher Andrews,et al.  Helping Intelligence Analysts Make Connections , 2011, Scalable Integration of Analytics and Visualization.

[75]  Ed Huai-hsin Chi,et al.  Entity Workspace: An Evidence File That Aids Memory, Inference, and Reading , 2006, ISI.

[76]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[77]  Chris North,et al.  Snap-Together Visualization: A User Interface for Coordinating Visualizations via Relational Schemata , 2003 .

[78]  Chris North,et al.  Bixplorer: Visual Analytics with Biclusters , 2013, Computer.

[79]  Walter Didimo,et al.  Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations , 2010, PacificVis.

[80]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[81]  A. Brazma,et al.  Gene expression data analysis , 2000, FEBS letters.

[82]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[83]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[84]  Aedín C. Culhane,et al.  Expression Profiler: next generation - an online platform for analysis of microarray data , 2004, Nucleic Acids Res..

[85]  Musa H. Asyali,et al.  Gene Expression Profile Classification: A Review , 2006 .

[86]  Roberto Therón,et al.  BicOverlapper 2.0: visual analysis for gene expression , 2014, Bioinform..

[87]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[88]  Wan-Chi Siu,et al.  BiVisu: software tool for bicluster detection and visualization , 2007, Bioinform..

[89]  Stanley P. Azen,et al.  Computational Statistics and Data Analysis (CSDA) , 2006 .

[90]  Robert M. Chapman,et al.  Brain responses related to semantic meaning , 1978, Brain and Language.

[91]  Roberto Therón,et al.  A visual analytics approach for understanding biclustering results from microarray data , 2008, BMC Bioinformatics.

[92]  Dieter Schmalstieg,et al.  VisBricks: Multiform Visualization of Large, Inhomogeneous Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[93]  Jinze Liu,et al.  Biclustering in gene expression data by tendency , 2004 .

[94]  Dieter Schmalstieg,et al.  Comparative Analysis of Multidimensional, Quantitative Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[95]  Lorrie Faith Cranor,et al.  A Framework for Reasoning About the Human in the Loop , 2008, UPSEC.

[96]  Christian Posse,et al.  IN-SPIRE InfoVis 2004 Contest Entry , 2004, IEEE Symposium on Information Visualization.

[97]  M. Mattson,et al.  From words to meaning: A semantic illusion , 1981 .