Cardiac reconstruction and analysis from high resolution CT images

OF THE DISSERTATION Cardiac Reconstruction and Analysis from High Resolution CT Images by Mingchen Gao Dissertation Director: Professor Dimitris N. Metaxas Heart disease is a major cause of mortality worldwide. Detecting/diagnosing such diseases in their early stages is critical, and heavily depends on non-invasive imaging methods, e.g., computed tomography (CT) and magnetic resonance imaging (MRI). High resolution cardiac CT imaging technology has the resolution to reveal the complex endocardial structures of the left ventricle, such as the trabeculae and the papillary muscles. However, the development of suitable methods for the quantitative analysis of these dense data sources has lagged greatly behind the development of the imaging methods themselves. As a result, in clinical practice, and in much of the research that uses these imaging data, the quantitative analysis of cardiac function has largely been confined to the calculation of simple measures of global function, such as the ejection fraction, while local function being just qualitatively assessed. Therefore there is a large amount of the functional information potentially available from cardiac images essentially untouched. In this thesis, for the first time, we extract clinical meaningful endocardial information of the left ventricle (LV) from high resolution CT images. The reconstructed result captured the fine detailed structures, which are extremely challenging to segment due to their delicate and complex nature in both geometry and topology. Our

[1]  Cristian Lorenz,et al.  A comprehensive shape model of the heart , 2006, Medical Image Anal..

[2]  James S. Duncan,et al.  Volumetric Deformation Analysis Using Mechanics-Based Data Fusion: Applications in Cardiac Motion Recovery , 1999, International Journal of Computer Vision.

[3]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[4]  Junzhou Huang,et al.  3D Anatomical Shape Atlas Construction Using Mesh Quality Preserved Deformable Models , 2012, MeshMed.

[5]  Junzhou Huang,et al.  4D Cardiac Reconstruction Using High Resolution CT Images , 2011, FIMH.

[6]  Elliot R. McVeigh,et al.  A New Method for Cardiac Computed Tomography Regional Function Assessment: Stretch Quantifier for Endocardial Engraved Zones (SQUEEZ) , 2012, Circulation. Cardiovascular imaging.

[7]  Marie-Pierre Jolly,et al.  Automatic Segmentation of the Left Ventricle in Cardiac MR and CT Images , 2006, International Journal of Computer Vision.

[8]  Chao Chen,et al.  Hardness Results for Homology Localization , 2010, SODA '10.

[9]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[10]  Xiaoxu Wang,et al.  LV surface reconstruction from sparse tMRI using Laplacian Surface Deformation and Optimization , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[11]  Amir A. Amini,et al.  A survey of shaped-based registration and segmentation techniques for cardiac images , 2013, Comput. Vis. Image Underst..

[12]  Johan Montagnat,et al.  4D deformable models with temporal constraints: application to 4D cardiac image segmentation , 2005, Medical Image Anal..

[13]  Richard D. White,et al.  CT of the heart: principles, advances, clinical uses. , 2005, Cleveland Clinic journal of medicine.

[14]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[15]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[18]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[19]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[20]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[23]  Dinggang Shen,et al.  An Adaptive-Focus Deformable Model Using Statistical and Geometric Information , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[26]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Xiao Han,et al.  Digital Topology on Adaptive Octree Grids , 2009, Journal of Mathematical Imaging and Vision.

[28]  Dimitris N. Metaxas Physics-Based Deformable Models: Applications to Computer Vision, Graphics, and Medical Imaging , 1996 .

[29]  Dimitris N. Metaxas,et al.  Metamorphs: Deformable Shape and Appearance Models , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  F. Xiao,et al.  Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms , 2005 .

[31]  Hui Wang,et al.  Cardiac Motion and Deformation Recovery From MRI: A Review , 2012, IEEE Transactions on Medical Imaging.

[32]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[33]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[34]  Gareth Funka-Lea,et al.  Automatic heart isolation for CT coronary visualization using graph-cuts , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[35]  Christoph H. Lampert,et al.  Enforcing topological constraints in random field image segmentation , 2011, CVPR 2011.

[36]  James S. Duncan,et al.  Model-based deformable surface finding for medical images , 1996, IEEE Trans. Medical Imaging.

[37]  Michael Unser,et al.  Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation , 2005, IEEE Transactions on Medical Imaging.

[38]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[39]  Anthony J. Yezzi,et al.  A statistical approach to snakes for bimodal and trimodal imagery , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[40]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[41]  Dimitris N. Metaxas,et al.  Deformable segmentation via sparse representation and dictionary learning , 2012, Medical Image Anal..

[42]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[44]  Scott Kulp,et al.  Segmentation and Blood Flow Simulations of Patient-Specific Heart Data , 2013 .

[45]  Scott Kulp,et al.  Practical patient-specific cardiac blood flow simulations using SPH , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[46]  Nikos Paragios,et al.  Shape registration in implicit spaces using information theory and free form deformations , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  David A Bluemke,et al.  Regional myocardial function: advances in MR imaging and analysis. , 2003, Radiographics : a review publication of the Radiological Society of North America, Inc.

[48]  Anthony J. Yezzi,et al.  Global Regularizing Flows With Topology Preservation for Active Contours and Polygons , 2007, IEEE Transactions on Image Processing.

[49]  Peter Hunold,et al.  Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. , 2005, AJR. American journal of roentgenology.

[50]  Dimitris N. Metaxas,et al.  3D Cardiac Anatomy Reconstruction Using High Resolution CT Data , 2004, MICCAI.

[51]  Jinah Park,et al.  Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM , 1996, Medical Image Anal..

[52]  J. Duncan,et al.  Point – Tracked Quantitative Analysis of Left Ventricular Motion from 3 D Image Sequences , 2000 .

[53]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[55]  G. Aurigemma,et al.  Noninvasive assessment of left ventricular mass, chamber volume, and contractile function , 1995 .

[56]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[57]  Bruce Fischl,et al.  Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops , 2007, IEEE Transactions on Medical Imaging.

[58]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[59]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[61]  Junzhou Huang,et al.  Papillary muscles analysis from high resolution CT using spatial-temporal skeleton extraction , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[62]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[63]  Dimitris N. Metaxas,et al.  Patient-Specific Analysis of Left Ventricular Blood Flow , 1998, MICCAI.

[64]  James S. Duncan,et al.  Bending and stretching models for LV wall motion analysis from curves and surfaces , 1992, Image Vis. Comput..

[65]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[66]  David F Yankelevitz,et al.  Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction. , 2008, International journal of cardiology.

[67]  Karl Rohr,et al.  Radial basis functions with compact support for elastic registration of medical images , 2001, Image Vis. Comput..

[68]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[69]  Nikos Paragios,et al.  Non-rigid registration using distance functions , 2003, Comput. Vis. Image Underst..

[70]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[71]  M. Breeuwer,et al.  Detection of trabeculae and papillary muscles in cardiac MR images , 2005, Computers in Cardiology, 2005.

[72]  Chao Chen,et al.  Morphological analysis of the papillary muscles and the trabeculae , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[73]  Marc Alexa,et al.  Laplacian mesh optimization , 2006, GRAPHITE '06.

[74]  Scott Kulp,et al.  Using High Resolution Cardiac CT Data to Model and Visualize Patient-Specific Interactions between Trabeculae and Blood Flow , 2011, MICCAI.

[75]  Wei Zeng,et al.  High resolution cardiac shape registration using Ricci flow , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[76]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[77]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[78]  Dimitris N. Metaxas,et al.  Image Segmentation Based on the Integration of Markov Random Fields and Deformable Models , 2000, MICCAI.

[79]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[80]  Junzhou Huang,et al.  Towards robust and effective shape modeling: Sparse shape composition , 2012, Medical Image Anal..

[81]  A. Yoganathan,et al.  Flow simulations in arbitrarily complex cardiovascular anatomies – An unstructured Cartesian grid approach , 2009 .

[82]  Sebastian Nowozin,et al.  Global connectivity potentials for random field models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  J. Yao,et al.  Three-dimensional echocardiography. , 1998, Current opinion in cardiology.

[84]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[85]  Dimitris Samaras,et al.  Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in N-D images , 2008, Comput. Vis. Image Underst..

[86]  Milan Sonka,et al.  4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function , 2010, IEEE Transactions on Medical Imaging.

[87]  Nicholas Ayache,et al.  Dense Non-Rigid Motion Estimation in Sequences of Medical Images Using Differential Constraints , 1995, CAIP.

[88]  J. Laidlaw,et al.  ANATOMY OF THE HUMAN BODY , 1967, The Ulster Medical Journal.

[89]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[90]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[91]  Suchendra M. Bhandarkar,et al.  Morphological Analysis of the Left Ventricular Endocardial Surface and Its Clinical Implications , 2012, MICCAI.

[92]  Leon Axel,et al.  Tagged Magnetic Resonance Imaging of the Heart: a Survey , 2004 .

[93]  Tian Shen,et al.  Active volume models for 3D medical image segmentation , 2009, CVPR.

[94]  Chao Chen,et al.  Segmenting the Papillary Muscles and the Trabeculae from High Resolution Cardiac CT through Restoration of Topological Handles , 2013, IPMI.

[95]  Timothy F. Cootes,et al.  3D Statistical Shape Models Using Direct Optimisation of Description Length , 2002, ECCV.

[96]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[97]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[98]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[99]  Dimitris N. Metaxas,et al.  Textured Liquids based on the Marker Level Set , 2007, Comput. Graph. Forum.

[100]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[101]  J M de Bakker,et al.  Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. , 1994, Cardiovascular research.

[102]  Dorin Comaniciu,et al.  Patient-specific modeling of left heart anatomy, dynamics and hemodynamics from high resolution 4D CT , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[103]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[104]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[105]  Dinggang Shen,et al.  An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures , 2001, IEEE Transactions on Medical Imaging.