The influence of Ni or Co substitution for Fe on glass forming ability and magnetic properties in the quaternary Fe–Nb–B–Ni and (Fe, Ni, Co)–Nb–B alloy systems

The influence of substitution of Fe by Ni or Co on the glass forming ability (GFA) and soft magnetic properties of the Fe 71− x Nb 6 B 23 Ni x ( x = 1–5) and (Fe 1− x − y Ni x Co y ) 71 Nb 6 B 23 ( x = 0.1–0.2, y = 0.1–0.2) amorphous ribbons was systematically studied. The Ni or Co substitution for Fe enhances the GFA and decreases the thermal stability for Fe–Nb–B–Ni and (Fe, Ni, Co)–Nb–B alloy systems. The alloys with Ni and Co substitution have lower glass transition temperature and wider supercooled liquid region than that with Ni substitution. The (Fe 0.7 Ni 0.1 Co 0.2 ) 71 Nb 6 B 23 alloys achieved the maximum supercooled liquid region of 78 K. The saturation magnetization decreased and the coercivity increased with increasing Ni or Co content. The (Fe 0.8 Ni 0.1 Co 0.1 ) 71 Nb 6 B 23 amorphous ribbons exhibited the best soft magnetic properties with high saturation and low coercivity. The findings of Fe-based multicomponent alloys with large GFA, low cost, and good magnetic properties are encouraging to develop new soft magnetic materials.

[1]  Y. K. Kim,et al.  Effect of compositional variation on the soft magnetic properties of Fe(87-x-y)CoxTi7 Zr6By amorphous ribbons , 2014 .

[2]  B. Shen,et al.  Magnetic properties of (Fe1−xNix)72B20Si4Nb4 (x=0.0–0.5) bulk metallic glasses , 2013 .

[3]  B. Shen,et al.  Enhancement of plastic deformation in FeCoNbB bulk metallic glass with superhigh strength , 2013 .

[4]  J. M. Park,et al.  Enhanced plasticity of Fe–Nb–B–(Ni, Cu) bulk metallic glasses by controlling the heterogeneity and elastic constants , 2012 .

[5]  Z. Lu,et al.  Formation, Crystallization Behavior, and Soft Magnetic Properties of FeCSiBP Bulk Metallic Glass Fabricated Using Industrial Raw Materials , 2012, Metallurgical and Materials Transactions A.

[6]  B. Majumdar,et al.  Structure, Properties, and Glass Forming Ability of Melt-Spun Fe-Zr-B-Cu Alloys with Different Zr/B Ratios , 2011 .

[7]  J. Eckert,et al.  Enhancement of plastic deformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio , 2010 .

[8]  A. Makino,et al.  Soft magnetic Fe–Si–B–P–C bulk metallic glasses without any glass-forming metal elements , 2009 .

[9]  M. Ge,et al.  Catching Fe-based bulk metallic glass with combination of high glass forming ability, ultrahigh strength and good plasticity in Fe–Co–Nb–B system , 2009 .

[10]  I. Betancourt,et al.  Magnetic properties of B-rich (Fe, Co)–Nb–B amorphous alloys , 2009 .

[11]  L. Ning,et al.  INFLUENCE OF Co ON THE GLASS FORMING ABILITY AND SOFT MAGNETIC PROPERTY OF Fe–B–Y–Nb BULK AMORPHOUS ALLOY , 2009 .

[12]  Y. Li,et al.  Ductile Fe-Nb-B bulk metallic glass with ultrahigh strength , 2008 .

[13]  H. Yang,et al.  The influence of Nb and Zr on glass-formation ability in the ternary Fe–Nb–B and Fe–Zr–B and quaternary Fe–(Nb,Zr)–B alloy systems , 2008 .

[14]  M. Stoica,et al.  New ternary Fe-based bulk metallic glass with high boron content , 2006 .

[15]  J. H. Kim,et al.  Formation, and mechanical and magnetic properties of bulk ferromagnetic Fe-Nb-B-Y-(Zr, Co) alloys , 2006 .

[16]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[17]  Jing Zhang,et al.  The effect of Y on glass forming ability , 2005 .

[18]  Joo-Hyung Kim,et al.  Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Nb–B–Y system , 2005 .

[19]  A. Inoue,et al.  Superhigh strength and good soft-magnetic properties of (Fe,Co)–B–Si–Nb bulk glassy alloys with high glass-forming ability , 2004 .

[20]  C. Liu,et al.  Structural amorphous steels. , 2004, Physical review letters.

[21]  Dong-Qiang Liu,et al.  Preparation, thermal stability, and magnetic properties of FeCoZrMoWB bulk metallic glass , 2004 .

[22]  Jun Wang,et al.  Preparation of bulk amorphous Fe-Ni-P-B-Ga alloys from industrial raw materials , 2003 .

[23]  C. Liu,et al.  A new glass-forming ability criterion for bulk metallic glasses , 2002 .

[24]  D. Miracle,et al.  Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys , 2001 .

[25]  T. Shen,et al.  BULK FERROMAGNETIC GLASSES IN THE Fe-Ni-P-B SYSTEM , 2001 .

[26]  Yat Li,et al.  Reduced glass transition temperature and glass forming ability of bulk glass forming alloys , 2000 .

[27]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[28]  A. Takeuchi,et al.  Ferromagnetic bulk amorphous alloys , 1998 .

[29]  Akihiro Makino,et al.  Nanocrystalline soft magnetic Fe-M-B (M = Zr, Hf, Nb) alloys and their applications , 1997 .

[30]  A. Takeuchi,et al.  New Fe–Co–Ni–Zr–B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties , 1997 .

[31]  A. Makino,et al.  Nanocrystalline structural evolution in Fe90Zr7B3 soft magnetic material , 1996 .

[32]  A. Inoue,et al.  Thermal and Magnetic Properties of Bulk Fe-Based Glassy Alloys Prepared by Copper Mold Casting , 1995 .

[33]  A. Makino,et al.  Magnetic properties and core losses of nanocrystalline FeMB (M Zr, Hf or Nb) alloys , 1994 .

[34]  A. L. Greer,et al.  Confusion by design , 1993, Nature.

[35]  Akihiro Makino,et al.  Low core losses of nanocrystalline Fe-M-B (M=Zr, Hf, or Nb) alloys , 1993 .

[36]  Toshio Sakurai,et al.  The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material , 1992 .

[37]  Y. Yoshizawa,et al.  New Fe-based soft magnetic alloys composed of ultrafine grain structure , 1988 .

[38]  J. Maddox New physics from new accelerators , 1988, Nature.

[39]  A. L. Greer,et al.  Formation of bulk metallic glass by fluxing , 1984 .