Protecting microRNAs from RNase degradation with steric DNA nanostructures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01829g Click here for additional data file.

A DNA nanostructure bearing a “Shuriken” shape is designed to deliver, protect and activate microRNA-145 functionality in human colorectal cancer cells. This novel DNA nanostructure enabled therapeutic platform greatly suppresses cancer cell proliferation and tumor growth.

[1]  M. I. Setyawati,et al.  DNA Nanostructures Carrying Stoichiometrically Definable Antibodies. , 2016, Small.

[2]  Chor Yong Tay,et al.  Cellular processing and destinies of artificial DNA nanostructures. , 2016, Chemical Society reviews.

[3]  Chor Yong Tay,et al.  Reality Check for Nanomaterial‐Mediated Therapy with 3D Biomimetic Culture Systems , 2016 .

[4]  Qiangbin Wang,et al.  Real-Time Monitoring Surface Chemistry-Dependent In Vivo Behaviors of Protein Nanocages via Encapsulating an NIR-II Ag2S Quantum Dot. , 2015, ACS nano.

[5]  C. Mao,et al.  Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA. , 2015, Biomaterials.

[6]  Dongmin Wu,et al.  Preoperative Detection and Intraoperative Visualization of Brain Tumors for More Precise Surgery: A New Dual-Modality MRI and NIR Nanoprobe. , 2015, Small.

[7]  Robert Langer,et al.  Non-genetic engineering of cells for drug delivery and cell-based therapy. , 2015, Advanced drug delivery reviews.

[8]  W. Duan,et al.  Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study , 2015, Drug design, development and therapy.

[9]  M. I. Setyawati,et al.  Electrochemical Quantification of Escherichia coli with DNA Nanostructure , 2015 .

[10]  Zhen Gu,et al.  ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. , 2015, Biomaterials.

[11]  Chor Yong Tay,et al.  Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. , 2015, ACS nano.

[12]  Chor Yong Tay,et al.  Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. , 2015, Small.

[13]  R. Dacosta,et al.  A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. , 2014, ACS nano.

[14]  Jiye Shi,et al.  Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. , 2014, Angewandte Chemie.

[15]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[16]  M. I. Setyawati,et al.  Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. , 2014, ACS applied materials & interfaces.

[17]  H. Bermudez,et al.  Aptamer-Targeted DNA Nanostructures for Therapeutic Delivery , 2014, Molecular pharmaceutics.

[18]  C. Mao,et al.  Self-assembly of DNA nanotubes with defined diameters and lengths. , 2014, Small.

[19]  Cuichen Wu,et al.  Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. , 2013, Journal of the American Chemical Society.

[20]  Jiye Shi,et al.  Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[21]  V. Petrenko,et al.  Synergetic Targeted Delivery of Sleeping‐Beauty Transposon System to Mesenchymal Stem Cells Using LPD Nanoparticles Modified with a Phage‐Displayed Targeting Peptide , 2013, Advanced functional materials.

[22]  Robert Langer,et al.  A vector-free microfluidic platform for intracellular delivery , 2013, Proceedings of the National Academy of Sciences.

[23]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[24]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[25]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[26]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[27]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[28]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[29]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[30]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[31]  Marc Bissonnette,et al.  EGFR Signals Downregulate Tumor Suppressors miR-143 and miR-145 in Western Diet–Promoted Murine Colon Cancer: Role of G1 Regulators , 2011, Molecular Cancer Research.

[32]  Sandhya P Koushika,et al.  An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. , 2011, Nature communications.

[33]  N. Seki,et al.  Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. , 2011, International journal of oncology.

[34]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[35]  Y. Mo,et al.  miR-145-mediated suppression of cell growth, invasion and metastasis. , 2010, American journal of translational research.

[36]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[37]  R. Misra,et al.  Biomaterials , 2008 .

[38]  Antony K. Chen,et al.  Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA , 2008, Nucleic acids research.

[39]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[40]  Naren Ramakrishnan,et al.  CMGSDB: integrating heterogeneous Caenorhabditis elegans data sources using compositional data mining , 2007, Nucleic Acids Res..

[41]  Robert Langer,et al.  An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. , 2006, Angewandte Chemie.

[42]  Weihong Tan,et al.  Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells. , 2005, Analytical chemistry.

[43]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[44]  B. Dalby,et al.  Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. , 2004, Methods.

[45]  Gang Bao,et al.  Dual FRET molecular beacons for mRNA detection in living cells. , 2004, Nucleic acids research.

[46]  Johannes Gerdes,et al.  The Ki‐67 protein: From the known and the unknown , 2000, Journal of cellular physiology.

[47]  Elazer R. Edelman,et al.  Adv. Drug Delivery Rev. , 1997 .

[48]  Juyoung Yoon,et al.  Chem Soc Rev , 2020 .