A comparative analysis of symmetric diketopyrrolopyrrole‐cored small conjugated molecules with aromatic flanks: From geometry to charge transport

Diketopyrrolopyrrole (DPP) derivatives are promising compounds for application in organic electronics. Here, we investigate several symmetrical N‐unsubstituted and N‐methyl substituted DPPs which differ in the heteroatom in the aromatic flanks. The conformational, electronic, and optical properties are characterized for single molecules in vacuum or a solvent. The intermolecular interactions are evaluated for interacting dimers. Here, a number of stacking geometries is tested, and dimers with mutual orientation of the molecules corresponding to the minimal binding energies are determined. The predicted charge carrier mobilities for stacks having minimal binding energies corroborate experimentally measured values. We conclude that DFT prediction of such stacks is a promising and computationally inexpensive approach to a rough estimation of transport properties. Additionally, the super‐cell of the experimentally resolved crystal structure is used to study the dynamics and to compute the charge transport along the hopping pathways. We discuss obtained high mobilities and relate them to the symmetry of DPP core. © 2018 Wiley Periodicals, Inc.

[1]  J. Mieczkowski,et al.  Supramolecular organization of bi- and terthiophene disubstituted diketopyrrolopyrrole, donor–acceptor–donor semiconducting derivatives , 2015 .

[2]  Hae Rang Lee,et al.  High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. , 2017, ACS applied materials & interfaces.

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  Sagar B. Sharma,et al.  α-Oligofurans: a computational study. , 2013, Chemistry.

[5]  Satish Patil,et al.  Diketopyrrolopyrrole‐based conjugated polymers and small molecules for organic ambipolar transistors and solar cells , 2013 .

[6]  A. Facchetti,et al.  Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. , 2017, Chemical reviews.

[7]  K. Kędzierski,et al.  Spectroscopic properties of diketopyrrolopyrrole derivatives with long alkyl chains , 2017 .

[8]  D. Amabilino,et al.  Solid state supramolecular structure of diketopyrrolopyrrole chromophores: correlating stacking geometry with visible light absorption , 2016 .

[9]  Jean-Luc Brédas,et al.  Polarization energies in oligoacene semiconductor crystals. , 2008, Journal of the American Chemical Society.

[10]  Mark A Ratner,et al.  Geometry and electronic coupling in perylenediimide stacks: mapping structure-charge transport relationships. , 2010, Journal of the American Chemical Society.

[11]  M. Ratner,et al.  Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. , 2005, Journal of the American Chemical Society.

[12]  Niyazi Serdar Sariciftci,et al.  PROGRESS IN PLASTIC ELECTRONICS DEVICES , 2006 .

[13]  M. Leclerc,et al.  Thiocarbonyl Substitution in 1,4-Dithioketopyrrolopyrrole and Thienopyrroledithione Derivatives: An Experimental and Theoretical Study , 2014 .

[14]  Ronald T. Raines,et al.  Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. , 2009, Journal of the American Chemical Society.

[15]  Wen‐Chang Chen,et al.  Diketopyrrolopyrrole-thiophene-based acceptor-donor-acceptor conjugated materials for high-performance field-effect transistors. , 2013, Chemistry, an Asian journal.

[16]  J. Brédas,et al.  To bend or not to bend ‒ are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity? , 2016 .

[17]  K. Lee,et al.  Diketopyrrolopyrrole: A versatile building block for organic photovoltaic materials , 2013, Macromolecular Research.

[18]  Yican Wu,et al.  Intermolecular H···O═C bonds induced 2D self‐assembly of thiophene based diketopyrrolopyrrole derivative , 2017 .

[19]  D. Perepichka,et al.  Supramolecular ordering of difuryldiketopyrrolopyrrole: the effect of alkyl chains and inter-ring twisting , 2016 .

[20]  Dong Wang,et al.  Nonadiabatic Molecular Dynamics Modeling of the Intrachain Charge Transport in Conjugated Diketopyrrolo-pyrrole Polymers , 2014 .

[21]  Alán Aspuru-Guzik,et al.  Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications. , 2014, Topics in current chemistry.

[22]  N. Renaud,et al.  Mechanically controlled quantum interference in individual π-stacked dimers. , 2016, Nature chemistry.

[23]  Alessandro Gandini,et al.  Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials , 2008 .

[24]  L. de Laporte,et al.  A water-soluble PEGylated RGD-functionalized bisbithiophenyl diketopyrrolopyrrole as a photoacoustic sonophore , 2018, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[25]  Denis Fichou,et al.  Structural order in conjugated oligothiophenes and its implications on opto-electronic devices , 2000 .

[26]  D. Perepichka,et al.  H-Bonding Control of Supramolecular Ordering of Diketopyrrolopyrroles , 2017 .

[27]  S. Patil,et al.  Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[28]  Zhenan Bao,et al.  Doped Organic Transistors. , 2016, Chemical reviews.

[29]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[30]  Z. Su,et al.  Theoretical study on the transport properties of oligothiophene–diketopyrrolopyrrole derivatives: quinoidal versus aromatic , 2014, Theoretical Chemistry Accounts.

[31]  Christopher J. Tassone,et al.  Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. , 2013, Journal of the American Chemical Society.

[32]  Thanh Luan Nguyen,et al.  Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers , 2015 .

[33]  G. Seifert,et al.  Conformational and electronic properties of small benzothiadiazole-cored oligomers with aryl flanking units: Thiophene versus Furan , 2017 .

[34]  Bin Dong,et al.  Electronic structure and microscopic charge‐transport properties of a new‐type diketopyrrolopyrrole‐based material , 2015, J. Comput. Chem..

[35]  R. Janssen,et al.  Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells , 2011 .

[36]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[37]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[38]  A. Khokhlov,et al.  Self-Assembled Monolayers of β-Alkylated Oligothiophenes on Graphite Substrate: Molecular Dynamics Simulation , 2007 .

[39]  J. Yao,et al.  Design of Diketopyrrolopyrrole (DPP)‐Based Small Molecules for Organic‐Solar‐Cell Applications , 2017, Advanced materials.

[40]  Prashant Sonar,et al.  High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics , 2013 .

[41]  John E. Anthony,et al.  High Mobility Field‐Effect Transistors with Versatile Processing from a Small‐Molecule Organic Semiconductor , 2013, Advanced materials.

[42]  M. Bendikov,et al.  α-Oligofurans: an emerging class of conjugated oligomers for organic electronics. , 2014, Angewandte Chemie.

[43]  S. Manzhos,et al.  High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent. , 2016, ACS applied materials & interfaces.

[44]  Gui Yu,et al.  Highly π‐Extended Copolymers with Diketopyrrolopyrrole Moieties for High‐Performance Field‐Effect Transistors , 2012, Advanced materials.

[45]  F. Würthner,et al.  Diketopyrrolopyrrole Columnar Liquid-Crystalline Assembly Directed by Quadruple Hydrogen Bonds. , 2017, Angewandte Chemie.

[46]  B. Collins,et al.  The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. , 2014, Journal of the American Chemical Society.

[47]  A. Pron,et al.  Diketopyrrolopyrroles disubstituted with alkylated thiophenes: effect of the donor unit size and solubilizing substituents on their redox, photo- and electroluminescence properties , 2015 .

[48]  Chao-Ping Hsu,et al.  The electronic couplings in electron transfer and excitation energy transfer. , 2009, Accounts of chemical research.

[49]  G. Yu,et al.  High‐performance field‐effect transistors based on furan‐containing diketopyrrolopyrrole copolymer under a mild annealing temperature , 2014 .

[50]  S. Patil,et al.  Influence of Side-Chain on Structural Order and Photophysical Properties in Thiophene Based Diketopyrrolopyrroles: A Systematic Study , 2012 .

[51]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[52]  M. Newton,et al.  Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions , 1991 .

[53]  Diketopyrrolopyrrole based organic semiconductors with different numbers of thiophene units: symmetry tuning effect on electronic devices , 2018 .

[54]  C. McHugh,et al.  Exploring structure based charge transport relationships in phenyl diketopyrrolopyrrole single crystals using a 2D π–π dimer model system , 2017 .

[55]  P. Sonar,et al.  Characteristics of High-Performance Ambipolar Organic Field-Effect Transistors Based on a Diketopyrrolopyrrole-Benzothiadiazole Copolymer , 2012, IEEE Transactions on Electron Devices.

[56]  Thuc‐Quyen Nguyen,et al.  Hole Transport in Diketopyrrolopyrrole (DPP) Small Molecules: A Joint Theoretical and Experimental Study , 2013 .

[57]  R. Docherty,et al.  Theoretical molecular modelling calculations on the solid state structure of some organic pigments , 2004 .

[58]  Kai A. I. Zhang,et al.  Conjugated polymers containing diketopyrrolopyrrole units in the main chain , 2010, Beilstein journal of organic chemistry.

[59]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[60]  Yang Yang,et al.  Energy transfer within small molecule/conjugated polymer blends enhances photovoltaic efficiency , 2017 .

[61]  Gui Yu,et al.  A stable solution-processed polymer semiconductor with record high-mobility for printed transistors , 2012, Scientific Reports.

[62]  P. Sonar,et al.  Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. , 2011, Journal of the American Chemical Society.

[63]  Joydeep Dhar,et al.  Herringbone to cofacial solid state packing via H-bonding in diketopyrrolopyrrole (DPP) based molecular crystals: influence on charge transport. , 2015, Chemical communications.

[64]  Henning Sirringhaus,et al.  High‐Performance Ambipolar Diketopyrrolopyrrole‐Thieno[3,2‐b]thiophene Copolymer Field‐Effect Transistors with Balanced Hole and Electron Mobilities , 2012, Advanced materials.

[65]  S. Manzhos,et al.  A comparative study of electrochemical, optical properties and electropolymerization behavior of thiophene- and furan-substituted diketopyrrolopyrrole , 2017 .

[66]  D. Beljonne,et al.  Optical properties of oligothiophene substituted diketopyrrolopyrrole derivatives in the solid phase: joint J- and H-type aggregation. , 2012, The journal of physical chemistry. A.

[67]  Wenping Hu,et al.  Naphthalenediimide-Benzothiadiazole Copolymer Semiconductors: Rational Molecular Design for Air-Stable Ambipolar Charge Transport , 2013 .

[68]  C. B. Nielsen,et al.  Recent Advances in the Development of Semiconducting DPP‐Containing Polymers for Transistor Applications , 2013, Advanced materials.

[69]  B. Captain,et al.  Diketopyrrolopyrrole assembly into J‐aggregates , 2016 .

[70]  M. Wasielewski,et al.  Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives. , 2016, Journal of the American Chemical Society.

[71]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[72]  Joydeep Dhar,et al.  Photophysical, electrochemical and solid state properties of diketopyrrolopyrrole based molecular materials: importance of the donor group , 2014 .

[73]  O. Guskova,et al.  Charge carrier mobility in one-dimensional aligned π-stacks of conjugated small molecules with a benzothiadiazole central unit. , 2017, Physical chemistry chemical physics : PCCP.

[74]  J. Northrup,et al.  Atomic and electronic structure of polymer organic semiconductors: P3HT, PQT, and PBTTT , 2007 .

[75]  S. G. Semenov,et al.  Computational study of structure, electronic, and microscopic charge transport properties of small conjugated diketopyrrolopyrrole‐thiophene molecules , 2016 .

[76]  Kai Wang,et al.  Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells , 2015, International journal of molecular sciences.

[77]  K. Ghiggino,et al.  Solvatochromism in Diketopyrrolopyrrole Derivatives: Experimental and Computational Studies , 2014 .

[78]  D. Gedefaw,et al.  Recent Development of Quinoxaline Based Polymers/Small Molecules for Organic Photovoltaics , 2017 .

[79]  Hong-Xing Zhang,et al.  Molecular design of organic dyes with diketopyrrolopyrrole for dye‐sensitized solar cell: A theoretical approach , 2014 .

[80]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[81]  F. Dumur,et al.  Diketopyrrolopyrrole dyes: Structure/reactivity/efficiency relationship in photoinitiating systems upon visible lights , 2014 .

[82]  Kihang Choi,et al.  Crystal structure prediction of organic materials: Tests on the 1,4-diketo-3,6-diphenylpyrrolo(3,4-c)pyrrole and 1,4-diketo-3,6-bis(4′-dipyridyl)-pyrrolo-[3,4-c]pyrrole , 2011 .

[83]  Jean-Luc Brédas,et al.  Synthetic principles directing charge transport in low-band-gap dithienosilole-benzothiadiazole copolymers. , 2012, Journal of the American Chemical Society.