Approximate Reasoning in Supervised Classification Systems

[1]  Hideo Tanaka,et al.  Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms , 1994, CVPR 1994.

[2]  Hisao Ishibuchi,et al.  Efficient fuzzy partition of pattern space for classification problems , 1993 .

[3]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[4]  Herman Akdag,et al.  Approximate Reasoning for Processing Uncertainty , 2001, J. Adv. Comput. Intell. Intell. Informatics.

[5]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[6]  H. Ishibuchi,et al.  Distributed representation of fuzzy rules and its application to pattern classification , 1992 .

[7]  Hamid Seridi,et al.  Une approche qualitative sur le traitement de l'incertain : Application au système expert , 2003 .

[8]  Hisao Ishibuchi,et al.  Selecting fuzzy rules with forgetting in fuzzy classification systems , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[9]  C. Marsala,et al.  Apprentissage inductif en presence de donnees imprecises : construction et utilisation d'arbres de decision flous , 1998 .

[10]  Gianni Vernazza Image classification by extended certainty factors , 1993, Pattern Recognit..

[11]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[12]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.