Estimating Long Tail Models for Risk Trends

This letter develops a method for estimating trends of extreme events statistics across multiple time periods. Some of the periods might have no extreme events and some might have much data. The extreme event distribution is modeled with a Pareto or exponential tail. The method requires selecting an extreme event threshold and then solving two convex problems for the tail parameters. Solving one provides a smoothed tail rate trend, solving another, the smoothed trend of the tail quantile level. The approach is illustrated by trending the 10-year extreme event risks for S&P 500 index daily losses and for peak power load in electrical utility data.

[1]  Sylvain Sardy,et al.  Extreme-Quantile Tracking for Financial Time Series , 2014 .

[2]  David A. Clifton,et al.  An Extreme Function Theory for Novelty Detection , 2013, IEEE Journal of Selected Topics in Signal Processing.

[3]  Athina P. Petropulu,et al.  Long-range dependence and heavy-tail modeling for teletraffic data , 2002, IEEE Signal Process. Mag..

[4]  Thomas S. Shively,et al.  Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold , 1995 .

[5]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[6]  Georgios B. Giannakis,et al.  Monitoring and Optimization for Power Grids: A Signal Processing Perspective , 2013, IEEE Signal Processing Magazine.

[7]  Peter Hall,et al.  On the estimation of extreme tail probabilities , 1997 .

[8]  Yong Chen,et al.  Impacts of outliers and mis-specification of priors on Bayesian fisheries-stock assessment , 2000 .

[9]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[10]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[11]  Mhamed-Ali El-Aroui,et al.  Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modelling , 2005, 1103.6216.

[12]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[13]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[14]  B. Arnold,et al.  Bayesian Estimation and Prediction for Pareto Data , 1989 .

[15]  Jon Danielsson,et al.  Beyond the Sample: Extreme Quantile and Probability Estimation , 1998 .

[16]  Chrysostomos L. Nikias,et al.  Scalar quantisation of heavy-tailed signals , 2000 .

[17]  Luis A. Escobar,et al.  Teaching about Approximate Confidence Regions Based on Maximum Likelihood Estimation , 1995 .

[18]  Petar M. Djuric,et al.  The Science Behind Risk Management , 2011, IEEE Signal Processing Magazine.

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[20]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[21]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[22]  Richard L. Smith,et al.  Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles , 2005 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[25]  S. Roberts Novelty detection using extreme value statistics , 1999 .

[26]  Karolin Baecker,et al.  Two Dimensional Signal And Image Processing , 2016 .