Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors

[1]  Xiaodong Zhuang,et al.  Flexible All‐Solid‐State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene , 2017 .

[2]  Ping Hu,et al.  Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors , 2016, Nano Research.

[3]  C. Zhang,et al.  Planar integration of flexible micro-supercapacitors with ultrafast charge and discharge based on interdigital nanoporous gold electrodes on a chip , 2016 .

[4]  Wen Luo,et al.  In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices , 2016 .

[5]  L. Mai,et al.  Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes , 2016 .

[6]  Lin Xu,et al.  Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors , 2016, Nano Research.

[7]  Qian Wang,et al.  Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities , 2016 .

[8]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[9]  T. A. Hatton,et al.  Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. , 2015, Journal of colloid and interface science.

[10]  Xunyu Lu,et al.  Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities , 2015, Nature Communications.

[11]  Huiling Yang,et al.  Flexible Asymmetric Micro‐Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density , 2015 .

[12]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[13]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[14]  Dingshan Yu,et al.  Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solid‐State Micro‐Supercapacitors with High Volumetric Energy Density , 2014, Advanced materials.

[15]  Q. Wang,et al.  Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities , 2014 .

[16]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[17]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[18]  M. Schwab,et al.  Screen‐Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks , 2013 .

[19]  R. Mane,et al.  Concentration-dependent electrochemical supercapacitive performance of Fe2O3 , 2013 .

[20]  F. Kang,et al.  A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies , 2013 .

[21]  Q. Xue,et al.  Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. , 2013, Nanoscale.

[22]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[23]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[24]  Yunlong Zhao,et al.  Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. , 2013, Nano letters.

[25]  Eleanor I. Gillette,et al.  Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties. , 2013, ACS nano.

[26]  Zheng Yan,et al.  3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. , 2013, Nano letters.

[27]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[28]  Maiyong Zhu,et al.  Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties , 2012 .

[29]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[30]  Xinliang Feng,et al.  2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors , 2011, Advanced materials.

[31]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[32]  Yimin A. Wu,et al.  Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. , 2011, Nano letters.

[33]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[34]  D. Bélanger,et al.  Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes , 2011 .

[35]  Hyun Joon Shin,et al.  Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. , 2011, Nano letters.

[36]  L. Kong,et al.  A Comparative Study of Potentiostatic and Potentiodynamic Method in the Synthesis of MnO2 Films for Electrochemical Capacitors , 2011 .

[37]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[38]  Mao-Sung Wu,et al.  Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries , 2010 .

[39]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[40]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[41]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[42]  D. Guyomard,et al.  Study of structural defects in γ‐MnO2 by Raman spectroscopy , 2002 .

[43]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[44]  M. Stranick MnO2 by XPS , 1999 .

[45]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[46]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[47]  H. Kim,et al.  Effect of Ferric Oxide on the High-Temperature Removal of Hydrogen Sulfide over ZnO-Fe2O3 Mixed Metal Oxide Sorbent , 1995 .

[48]  G. Polzonetti,et al.  XPS study of MnO2 minerals treated by bioleaching , 1990 .

[49]  Daeil Kim,et al.  Erratum: High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes (Nanoscale (2014) 6 (9655-9664)) , 2014 .

[50]  Daeil Kim,et al.  Erratum: Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor (Nanoscale (2014) 6 (12034-12041)) , 2014 .

[51]  Jeong Sook Ha,et al.  all-solid-state fl exible micro-supercapacitor arrays with layer-by-layer assembled MWNT / MnO x nanocomposite electrodes † , 2014 .

[52]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[53]  V. Nefedov,et al.  A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy , 1977 .