Field‐Aligned Isotropic Surface Remeshing

We present a novel isotropic surface remeshing algorithm that automatically aligns the mesh edges with an underlying directional field. The alignment is achieved by minimizing an energy function that combines both centroidal Voronoi tessellation (CVT) and the penalty enforced by a six‐way rotational symmetry field. The CVT term ensures uniform distribution of the vertices and high remeshing quality, and the field constraint enforces the directional alignment of the edges. Experimental results show that the proposed approach has the advantages of isotropic and field‐aligned remeshing. Our algorithm is superior to the representative state‐of‐the‐art approaches in various aspects.

[1]  Joshua A. Levine,et al.  Particle systems for adaptive, isotropic meshing of CAD models , 2012, Engineering computations.

[2]  Baining Guo,et al.  General planar quadrilateral mesh design using conjugate direction field , 2011, ACM Trans. Graph..

[3]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[4]  Dong-Ming Yan,et al.  Low-Resolution Remeshing Using the Localized Restricted Voronoi Diagram , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Wenping Wang,et al.  Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh , 2012, Comput. Graph. Forum.

[6]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[7]  Ross T. Whitaker,et al.  Particle systems for adaptive, isotropic meshing of CAD models , 2012, Engineering with Computers.

[8]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[9]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[10]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[11]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[12]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[13]  Houman BOROUCHAKIyUTT,et al.  Surface Mesh Evaluation , 1997 .

[14]  Jianwei Guo,et al.  A Simple Push-Pull Algorithm for Blue-Noise Sampling , 2017, IEEE Transactions on Visualization and Computer Graphics.

[15]  Pierre Alliez,et al.  Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement , 2017, IEEE Transactions on Visualization and Computer Graphics.

[16]  Charlie C. L. Wang,et al.  A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation , 2015, Comput. Vis. Media.

[17]  Mathieu Desbrun,et al.  Vector field processing on triangle meshes , 2015, SIGGRAPH Asia Courses.

[18]  Shi-Min Hu,et al.  Metric-Driven RoSy Field Design and Remeshing , 2010, IEEE Transactions on Visualization and Computer Graphics.

[19]  Eugene Zhang,et al.  Editing operations for irregular vertices in triangle meshes , 2010, ACM Trans. Graph..

[20]  Robert J. Renka Two Simple Methods for Improving a Triangle Mesh Surface , 2016, Comput. Graph. Forum.

[21]  Bruno Lévy,et al.  Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..

[22]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[23]  Dong-Ming Yan,et al.  Non-Obtuse Remeshing with Centroidal Voronoi Tessellation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[24]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[25]  Dong-Ming Yan,et al.  Obtuse triangle suppression in anisotropic meshes , 2011, Comput. Aided Geom. Des..

[26]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[27]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[28]  Eugene Zhang,et al.  Hexagonal Global Parameterization of Arbitrary Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  都井 裕 Voronoi Tessellation , 2009, Encyclopedia of Database Systems.

[30]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[31]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[32]  Mohamed S. Ebeida,et al.  Disk Density Tuning of a Maximal Random Packing , 2016, Comput. Graph. Forum.

[33]  Dong-Ming Yan,et al.  Gap processing for adaptive maximal poisson-disk sampling , 2012, TOGS.

[34]  Xiaohong Jia,et al.  Efficient maximal Poisson-disk sampling and remeshing on surfaces , 2015, Comput. Graph..

[35]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[36]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[37]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[38]  Eugene Zhang Course notes rotational symmetries on surfaces: theory, algorithms, and applications , 2016, SIGGRAPH ASIA Courses.

[39]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[40]  Mariette Yvinec,et al.  Anisotropic Delaunay Meshes of Surfaces , 2015, TOGS.

[41]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[42]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[43]  Mario Botsch,et al.  Adaptive Remeshing for Real-Time Mesh Deformation , 2013, Eurographics.

[44]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[45]  Hujun Bao,et al.  Controllable highly regular triangulation , 2011, Science China Information Sciences.

[46]  Ross T. Whitaker,et al.  Topology, Accuracy, and Quality of Isosurface Meshes Using Dynamic Particles , 2007, IEEE Transactions on Visualization and Computer Graphics.

[47]  Alla Sheffer,et al.  Geodesic-based Surface Remeshing , 2003, IMR.

[48]  Hao Zhang,et al.  5-6-7 Meshes: Remeshing and analysis , 2012, Comput. Graph..

[49]  Baining Guo,et al.  Anisotropic simplicial meshing using local convex functions , 2014, ACM Trans. Graph..

[50]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[51]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[52]  Tao Ju,et al.  Extrinsically smooth direction fields , 2016, Comput. Graph..

[53]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[54]  Shi-Qing Xin,et al.  Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes , 2015, Comput. Aided Des..

[55]  Yan Fu,et al.  Direct sampling on surfaces for high quality remeshing , 2008, SPM '08.

[56]  Simon Fuhrmann,et al.  Direct Resampling for Isotropic Surface Remeshing , 2010, VMV.

[57]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[58]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.