Spherical-Radial Integration Rules for Bayesian Computation

Abstract The common numerical problem in Bayesian analysis is the numerical integration of the posterior. In high dimensions, this problem becomes too formidable for fixed quadrature methods, and Monte Carlo integration is the usual approach. Through the use of modal standardization and a spherical-radial transformation, we reparameterize in terms of a radius r and point z on the surface of the sphere in d dimensions. We propose two types of methods for spherical-radial integration. A completely randomized method uses randomly placed abscissas for the radial integration and for the sphere surface. A mixed method uses fixed quadrature (i.e., Simpson's rule) on the radius and randomized spherical integration. The mixed methods show superior accuracy in comparisons, require little or no assumptions, and provide diagnostics to detect difficult problems. Moreover, if the posterior is close to the multivariate normal, then the mixed methods can give remarkable accuracy.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  A. Zellner,et al.  Analysis of Distributed Lag Models with Application to Consumption Function Estimation , 1970 .

[3]  Bruce W. Turnbull,et al.  Survivorship Analysis of Heart Transplant Data , 1974 .

[4]  Arnold Zellner,et al.  An Introduction to Bayesian Inference in Econometrics. , 1974 .

[5]  J. Harley,et al.  A step-up procedure for selecting variables associated with survival. , 1975, Biometrics.

[6]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[7]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[8]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[9]  H. K. Van Dijk,et al.  Further experience in Bayesian analysis using Monte Carlo integration , 1980 .

[10]  I. P. Mysovskikh THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING INTERPOLATORY CUBATURE FORMULAE , 1980 .

[11]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[12]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[13]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data , 1983 .

[14]  E. Haeusler,et al.  On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .

[15]  J. E. H. Shaw,et al.  The implementation of the bayesian paradigm , 1985 .

[16]  Andrew F. Siegel,et al.  Unbiased Monte Carlo Integration Methods with Exactness for Low Order Polynomials , 1985 .

[17]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[18]  T. W. Anderson,et al.  Generation of random orthogonal matrices , 1987 .

[19]  J. Geweke,et al.  Antithetic acceleration of Monte Carlo integration in Bayesian inference , 1988 .

[20]  J. Teugels,et al.  Asymptotic Normality of Hill’s Estimator , 1989 .

[21]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[22]  L. Tierney,et al.  Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .

[23]  Michael Evans,et al.  Latent class analysis of two-way contingency tables by Bayesian methods , 1989 .

[24]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[25]  Tim Hesterberg,et al.  Importance sampling for Bayesian estimation , 1992 .

[26]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[27]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[28]  S. Csörgo,et al.  On the asymptotic normality of Hill's estimator , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  M. Evans,et al.  Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems , 1995 .

[30]  John Monahan,et al.  Stochastic Integration Rules for Infinite Regions , 1998, SIAM J. Sci. Comput..