Bounds for the BMI Eigenvalue Problem

[1]  G. Zhai,et al.  Decentralized H/sub /spl infin// controller design for large-scale systems: a matrix inequality approach using a homotopy method , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[2]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[3]  George P. Papavassilopoulos,et al.  Numerical Experience with Parallel Algorithms for Solving the BMI Problem , 1996 .

[4]  R. Skelton,et al.  The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design , 1995 .

[5]  Shinji Hara,et al.  Global optimization for constantly scaled /spl Hscr//sub /spl infin// control problem , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[6]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[7]  G. Papavassilopoulos,et al.  A global optimization approach for the BMI problem , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[8]  P. Gahinet,et al.  The projective method for solving linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Tetsuya Iwasaki,et al.  A unified matrix inequality approach to linear control design , 1993 .

[10]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .