Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim

Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.

[1]  Juris Hartmanis,et al.  Computational complexity of random access stored program machines , 1970, Mathematical systems theory.

[2]  Pascal Wallisch Local Field Potentials , 2014 .

[3]  P. Rosenfalck Intra- and extracellular potential fields of active nerve and muscle fibres. A physico-mathematical analysis of different models. , 1969, Acta physiologica Scandinavica. Supplementum.

[4]  A. Aertsen,et al.  Two-dimensional monitoring of spiking networks in acute brain slices , 2001, Experimental Brain Research.

[5]  Gaute T. Einevoll,et al.  ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms , 2015, Journal of Neuroscience Methods.

[6]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[7]  C Baumgartner,et al.  Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. , 1990, Journal of neurophysiology.

[8]  Giovanni Naldi,et al.  Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. , 2009, Journal of neurophysiology.

[9]  D. Barth,et al.  Topographic analysis of field potentials in rat vibrissa/barrel cortex , 1991, Brain Research.

[10]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[11]  Nicholas T. Carnevale,et al.  Expanding NEURON's Repertoire of Mechanisms with NMODL , 2000, Neural Computation.

[12]  Egidio D'Angelo,et al.  Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. , 2010, Journal of neurophysiology.

[13]  J. Eccles,et al.  Interpretation of action potentials evoked in the cerebral cortex. , 1951, Electroencephalography and clinical neurophysiology.

[14]  Xing Chen,et al.  Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue , 2014, Brain Structure and Function.

[15]  G Buzsáki,et al.  Cellular–Synaptic Generation of Sleep Spindles, Spike-and-Wave Discharges, and Evoked Thalamocortical Responses in the Neocortex of the Rat , 1997, The Journal of Neuroscience.

[16]  Egidio D'Angelo,et al.  Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells , 2007, Frontiers in cellular neuroscience.

[17]  Christopher I. Moore,et al.  Human Neuroscience , 2022 .

[18]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[19]  Bipin Nair,et al.  A modeling based study on the origin and nature of evoked post-synaptic local field potentials in granular layer , 2011, Journal of Physiology-Paris.

[20]  C. Mehring,et al.  Inference of hand movements from local field potentials in monkey motor cortex , 2003, Nature Neuroscience.

[21]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[22]  Padraig Gleeson,et al.  The Open Source Brain Initiative: enabling collaborative modelling in computational neuroscience , 2012, BMC Neuroscience.

[23]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[24]  Idan Segev,et al.  Compartmental models of complex neurons , 1989 .

[25]  R. Morgan,et al.  Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures , 2008, Proceedings of the National Academy of Sciences.

[26]  Theodoros P. Zanos,et al.  Local field potentials reflect multiple spatial scales in V4 , 2013, Front. Comput. Neurosci..

[27]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[28]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[29]  Antonio C. Roque,et al.  A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina , 2009, PloS one.

[30]  Egidio D'Angelo,et al.  Exploiting point source approximation on detailed neuronal models to reconstruct single neuron electric field and population LFP , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[31]  E W WALTON,et al.  Giant-cell Granuloma of the Respiratory Tract (Wegener's Granulomatosis) , 1958, British medical journal.

[32]  R. Caton The Electric Currents of the Brain , 1970 .

[33]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[34]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[35]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[36]  C. Bédard,et al.  Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. , 2003, Biophysical journal.

[37]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[38]  Egidio D'Angelo,et al.  The Spatial Organization of Long-Term Synaptic Plasticity at the Input Stage of Cerebellum , 2007, The Journal of Neuroscience.

[39]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[40]  Michael L. Hines,et al.  ModelDB - Making models publicly accessible to support computational neuroscience , 2003, Neuroinformatics.

[41]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[42]  David J. Anderson,et al.  Solid-State Electrodes for Multichannel Multiplexed Intracortical Neuronal Recording , 1986, IEEE Transactions on Biomedical Engineering.

[43]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[44]  Giorgio A Ascoli,et al.  Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. , 2008, Current medicinal chemistry.

[45]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[46]  R. Kawashima,et al.  An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. , 2010, Journal of neurophysiology.

[47]  C. Mehring,et al.  Encoding of Movement Direction in Different Frequency Ranges of Motor Cortical Local Field Potentials , 2005, The Journal of Neuroscience.

[48]  Gaute T. Einevoll,et al.  Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs) , 2015, Neuroinformatics.

[49]  Erik De Schutter,et al.  Computational Modeling Methods for Neuroscientists , 2009 .

[50]  Christof Koch,et al.  Using extracellular action potential recordings to constrain compartmental models , 2007, Journal of Computational Neuroscience.

[51]  V Taglietti,et al.  Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells: Experimental Evidence and Modeling of a Slow K+-Dependent Mechanism , 2001, The Journal of Neuroscience.

[52]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[53]  Thierry Nieus,et al.  LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. , 2006, Journal of neurophysiology.

[54]  Sergio Solinas,et al.  Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control , 2011, PloS one.

[55]  T. Sejnowski,et al.  LETTERS TO NATURE , 1996 .

[56]  R. Andersen,et al.  Cortical Local Field Potential Encodes Movement Intentions in the Posterior Parietal Cortex , 2005, Neuron.

[57]  R. Plonsey,et al.  Limitations of approximate solutions for computing the extracellular potential of single fibers and bundle equivalents , 1990, IEEE Transactions on Biomedical Engineering.

[58]  D. Wójcik,et al.  Independent Components of Neural Activity Carry Information on Individual Populations , 2014, PloS one.

[59]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[60]  Gaute T. Einevoll,et al.  LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons , 2014, Front. Neuroinform..

[61]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[62]  C. Bédard,et al.  Model of low-pass filtering of local field potentials in brain tissue. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  G. Holt A critical reexamination of some assumptions and implications of cable theory in neurobiology , 1998 .

[64]  R. Morris Foundations of cellular neurophysiology , 1996 .

[65]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[66]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[67]  Guoshi Li,et al.  A Two-Layer Biophysical Model of Cholinergic Neuromodulation in Olfactory Bulb , 2013, The Journal of Neuroscience.