Nitrogen and Hydrogen Adsorption by an Organic Microporous Crystal**

Quick on the uptake: Following its identification during a targeted search, the intriguing crystal structure of 3,3',4,4'-tetra(trimethylsilylethynyl)biphenyl was investigated. Simple removal of the included solvent provides an organic crystal with an open microporous structure that has a striking similarity to that of zeolite A (see picture). Reversible adsorption of nitrogen and hydrogen gases at 77 K confirms that the microporosity is permanent.

[1]  P. Sozzani,et al.  Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. , 2009, Chemical communications.

[2]  P. Wheatley,et al.  Gasspeicherung in nanoporösen Materialien , 2008 .

[3]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[4]  Madeleine Helliwell,et al.  Clathrate formation from octaazaphthalocyanines possessing bulky phenoxyl substituents: a new cubic crystal containing solvent-filled, nanoscale voids. , 2008, Chemistry.

[5]  Kimoon Kim,et al.  Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. , 2008, Angewandte Chemie.

[6]  R. Kuroda,et al.  A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. , 2008, Angewandte Chemie.

[7]  P. Wright Microporous Framework Solids , 2007 .

[8]  Zhibing Zhang,et al.  Profiting from nature: macroporous copper with superior mechanical properties. , 2007, Chemical communications.

[9]  Hong‐Cai Zhou,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[10]  Qisheng Huo,et al.  Chemistry of Zeolites and Related Porous Materials , 2007 .

[11]  J. Atwood,et al.  Carbon Dioxide Capture in a Self-Assembled Organic Nanochannels , 2007 .

[12]  P. Budd,et al.  Microporous Polymers as Potential Hydrogen Storage Materials , 2007 .

[13]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[14]  P. Budd,et al.  The potential of organic polymer-based hydrogen storage materials. , 2007, Physical chemistry chemical physics : PCCP.

[15]  K. Harris Fundamental and Applied Aspects of Urea and Thiourea Inclusion Compounds , 2007 .

[16]  J. Atwood,et al.  Engineering void space in organic van der Waals crystals: calixarenes lead the way. , 2007, Chemical Society reviews.

[17]  Mao-Sen Yuan,et al.  Acceptor or donor (diaryl B or N) substituted octupolar truxene: synthesis, structure, and charge-transfer-enhanced fluorescence. , 2006, Journal of Organic Chemistry.

[18]  S. Vilar,et al.  3D comparative structural study of 6-hydroxy-4-methyl-5,7-dinitrocoumarin using experimental and theoretical approaches , 2006 .

[19]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[20]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[21]  Jürg Hulliger,et al.  Reversible sorption of nitrogen and xenon gas by the guest-free zeolite tris(o-phenylenedioxy)cyclotriphosphazene (TPP) , 2006 .

[22]  Bernd Jaeckel,et al.  Open‐Pore Organic Material for Retaining Radioactive I2 and CH3I , 2006 .

[23]  J. Wuest,et al.  Engineering crystals by the strategy of molecular tectonics. , 2005, Chemical communications.

[24]  N. McKeown,et al.  A phthalocyanine clathrate of cubic symmetry containing interconnected solvent-filled voids of nanometer dimensions. , 2005, Angewandte Chemie.

[25]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[26]  S. Torquato,et al.  Fluid permeabilities of triply periodic minimal surfaces. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Stuart R. Batten,et al.  Glorious uncertainty—challenges for network design , 2005 .

[28]  L. Vitagliano,et al.  Interconnected water channels and isolated hydrophobic cavities in a calixarene-based, nanoporous supramolecular architecture , 2005 .

[29]  C. Näther,et al.  Calix[5]- and Calix[8]arenes Bridged with Heterocycles† , 2005 .

[30]  S Bracco,et al.  Methane and carbon dioxide storage in a porous van der Waals crystal. , 2005, Angewandte Chemie.

[31]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[32]  Jianzhang Zhao,et al.  An enantioselective fluorescent sensor for sugar acids. , 2004, Journal of the American Chemical Society.

[33]  D. Lightner,et al.  Strongly fluorescent dipyrrinones - substituent effects , 2004 .

[34]  K. Harris,et al.  Direct time-resolved and spatially resolved monitoring of molecular transport in a crystalline nanochannel system. , 2004, Journal of the American Chemical Society.

[35]  M. Nishio CH/π hydrogen bonds in crystals , 2004 .

[36]  S. Torquato,et al.  Optimal design of manufacturable three-dimensional composites with multifunctional characteristics , 2003 .

[37]  A. Rheingold,et al.  Remote Rotamer Control: The Effect of a 4‐tert‐Butyl Group on the Coordination Chemistry of TpR Ligands , 2003 .

[38]  Dennis W. Smith,et al.  Synthesis and thermal cyclopolymerization of heterocycle containing bis-ortho-diynyl arenes , 2002 .

[39]  D. Craig,et al.  Preparation of solvent-free clathrand structures by the exclusion of an unwelcome guest , 2002 .

[40]  E. Zass,et al.  In Search of Organic Zeolites – Does Modern Information Retrieval Inevitably Become a ‘Sieving‐the‐Desert' Exercise? , 2002 .

[41]  Toshihiro Tanaka,et al.  Acridinylresorcinol as a self-complementary building block of robust hydrogen-bonded 2D nets with coordinative saturation. Preservation of crystal structures upon guest alteration, guest removal, and host modification. , 2002, Journal of the American Chemical Society.

[42]  Z. Miao,et al.  Structural evidence for the facile chelate-ring opening reactions of novel platinum(II)‒pyridine carboxamide complexes , 2002 .

[43]  Jing Li,et al.  Total Synthesis of Nominal Diazonamides—Part 2: On the True Structure and Origin of Natural Isolates , 2001 .

[44]  A. Osuka,et al.  Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. , 2001, Journal of the American Chemical Society.

[45]  K. Oyaizu,et al.  Electrochemical and ferromagnetic couplings in 4,4',4' '-(1,3,5-benzenetriyl)tris(phenoxyl) radical formation. , 2001, The Journal of organic chemistry.

[46]  Piero Sozzani,et al.  A Porous Crystalline Molecular Solid Explored by Hyperpolarized Xenon , 2000 .

[47]  Y. Aoyama Functional Organic Zeolite Analogues , 1999 .

[48]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[49]  Barbara A. Bench,et al.  Synthesis and structural characterization of non-planar perfluoro phthalonitriles , 1998 .

[50]  M. Nishio,et al.  CH/π Interaction in the Crystal Structure of Organic Compounds. A Database Study , 1998 .

[51]  K. Harris,et al.  Preferential Formation of C≡C–H···π(C≡C) Interactions in the Solid State , 1997 .

[52]  J. Wuest,et al.  Molecular Tectonics. Porous Hydrogen-Bonded Networks with Unprecedented Structural Integrity , 1997 .

[53]  J. Turkenburg,et al.  Programming a Hydrogen‐Bonding Code for the Specific Generation of a Supermacrocycle , 1996 .

[54]  R. Warmuth,et al.  Programmierung eines Wasserstoffbrückenbindungs‐Codes zur spezifischen Bildung eines Supermakrocyclus , 1996 .

[55]  B. Franck,et al.  Porphyrine mit aromatischem 26π-Elektronensystem†‡ , 1993 .

[56]  J. Atwood,et al.  Synthesis and characterization of rigid, deep-cavity calix[4]arenes , 1993 .

[57]  L. Milgrom,et al.  The structure of the palladium(II) and zinc(II) complexes of α,β,γ,δ-tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin , 1988 .

[58]  M. Ohno,et al.  High Diastereofacial Selectivity in Nucleophilic Additions to Chiral Acylsilanes , 1988 .

[59]  K. Kawazoe,et al.  METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON , 1983 .

[60]  K. Larsson,et al.  Two cubic phases in monoolein–water system , 1983, Nature.

[61]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[62]  A. Ionkin,et al.  2,4,6-Tri-tert-butylphenyl and 2,4-di-tert-butyl-6-methylphenyl groups: Look similar, react differently† , 2002 .

[63]  C. Knobler,et al.  Hemicarcerands with interiors potentially capable of binding large guests , 1995 .

[64]  K. Harris,et al.  Evidence for migration of molecules into the tunnel structure of urea inclusion compounds , 1993 .

[65]  S. Chardon-Noblat,et al.  MOLECULAR STRUCTURE OF AN OBLIQUE BIS-ZINC PORPHYRIN 1,10-PHENANTHROLINE. MODEL OF A FRAGMENT OF THE PHOTOSYNTHETIC REACTION CENTRE , 1993 .

[66]  L. Milgrom,et al.  Importance of macrocyclic ring deformation in the facile aerial oxidation of phenolic porphyrins , 1987 .

[67]  J. Davies Inclusion compounds , 1981, Nature.

[68]  R. M. Barrer,et al.  Dianin's compound as a zeolitic sorbent , 1976 .

[69]  Diana Crane,et al.  Science of Science , 1967, Nature.