Radiothérapie prostatique : prédiction de la toxicité tardive à partir des données dosimétriques

Resume L’augmentation de la dose tumorale, necessaire pour ameliorer le taux de controle biochimique et clinique des cancers de la prostate (en l’absence d’hormonotherapie), impose le respect de contraintes definies a priori (doses et volumes) pour la planification dosimetrique et limiter le risque de lesion des organes a risque. Les histogrammes dose–volume (HDV) pour chaque structure d’interet constituent le principal critere de jugement objectif permettant de valider un plan de traitement. Cet article presente une revue de la litterature portant sur les relations entre parametres dosimetriques (doses et volumes) et toxicite tardive, ainsi que sur les modeles mathematiques utilisant ces parametres pour predire le risque de survenue d’effets secondaires rectaux, urinaires, sexuels et osseux. Les recommandations dosimetriques et les modeles predictifs (Normal Tissue Complication Probability) sont plutot robustes pour la toxicite rectale tardive (rectorragies). Les contraintes portent sur le volume rectal recevant des doses elevees (≥ 70 Gy), mais aussi sur les volumes recevant des doses intermediaires (40 a 60 Gy). Les relations sont de moins bonne qualite pour le bulbe et les tetes femorales et quasi-inexistantes pour la vessie. Des etudes complementaires sont necessaires qui, dans l’ideal, devront integrer les facteurs de risque propres au patient (« comorbidites »), des tests evaluant la sensibilite aux rayonnements ionisants et des modeles mathematiques appliques a une imagerie tridimensionnelle realisee sous l’appareil de traitement (comme la tomographie conique).

[1]  P. Maingon,et al.  The GETUG 70 Gy vs. 80 Gy randomized trial for localized prostate cancer: feasibility and acute toxicity. , 2004, International journal of radiation oncology, biology, physics.

[2]  L. Gras,et al.  Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 GY) conformal radiotherapy for prostate cancer, using dose-volume histograms. , 1998, International journal of radiation oncology, biology, physics.

[3]  M. Goitein,et al.  Fitting of normal tissue tolerance data to an analytic function. , 1991, International journal of radiation oncology, biology, physics.

[4]  G. Gustafson,et al.  Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[5]  F Foppiano,et al.  Fitting late rectal bleeding data using different NTCP models: results from an Italian multi-centric study (AIROPROS0101). , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  C. Fiorino,et al.  Predictive models of toxicity with external radiotherapy for prostate cancer , 2009, Cancer.

[7]  A B Wolbarst,et al.  Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. , 1989, International journal of radiation oncology, biology, physics.

[8]  R. Valicenti,et al.  Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer. , 2003, International journal of radiation oncology, biology, physics.

[9]  Franca Foppiano,et al.  Relationships between DVHs and late rectal bleeding after radiotherapy for prostate cancer: analysis of a large group of patients pooled from three institutions. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  A B Wolbarst,et al.  Optimization of radiation therapy, III: A method of assessing complication probabilities from dose-volume histograms. , 1987, International journal of radiation oncology, biology, physics.

[11]  Tom W J Scheenen,et al.  IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. , 2006, International journal of radiation oncology, biology, physics.

[12]  M. V. van Herk,et al.  Urinary obstruction in prostate cancer patients from the Dutch trial (68 Gy vs. 78 Gy): relationships with local dose, acute effects, and baseline characteristics. , 2010, International journal of radiation oncology, biology, physics.

[13]  Manuela Gariboldi,et al.  To bleed or not to bleed. A prediction based on individual gene profiling combined with dose-volume histogram shapes in prostate cancer patients undergoing three-dimensional conformal radiation therapy. , 2009, International journal of radiation oncology, biology, physics.

[14]  Patrick A Kupelian,et al.  Hypofractionated intensity-modulated radiotherapy (70 gy at 2.5 Gy per fraction) for localized prostate cancer: long-term outcomes. , 2005, International journal of radiation oncology, biology, physics.

[15]  C. Fiorino,et al.  Clinical and dosimetric predictors of late rectal syndrome after 3D-CRT for localized prostate cancer: preliminary results of a multicenter prospective study. , 2008, International journal of radiation oncology, biology, physics.

[16]  George Starkschall,et al.  Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[17]  J. Lebesque,et al.  Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. , 2009, International journal of radiation oncology, biology, physics.

[18]  M. Zelefsky,et al.  Elucidating the etiology of erectile dysfunction after definitive therapy for prostatic cancer. , 1998, International journal of radiation oncology, biology, physics.

[19]  G. Sanguineti,et al.  Adjuvant androgen deprivation impacts late rectal toxicity after conformal radiotherapy of prostate carcinoma , 2002, British Journal of Cancer.

[20]  Richard K Valicenti,et al.  Toxicity after three-dimensional radiotherapy for prostate cancer with RTOG 9406 dose level IV. , 2004, International journal of radiation oncology, biology, physics.

[21]  V. Weinberg,et al.  Dose of radiation received by the bulb of the penis correlates with risk of impotence after three-dimensional conformal radiotherapy for prostate cancer. , 2001, Urology.

[22]  Christopher A Peters,et al.  Association of Single Nucleotide Polymorphisms in SOD2, XRCC1 and XRCC3 with Susceptibility for the Development of Adverse Effects Resulting from Radiotherapy for Prostate Cancer , 2008, Radiation research.

[23]  R. Mohan,et al.  Dose-volume response analyses of late rectal bleeding after radiotherapy for prostate cancer. , 2004, International journal of radiation oncology, biology, physics.

[24]  Michael J. Zelefsky,et al.  High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. , 2002, International journal of radiation oncology, biology, physics.

[25]  C. Ling,et al.  Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response. , 2000, International journal of radiation oncology, biology, physics.

[26]  Y. Yamada,et al.  Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. , 2008, International journal of radiation oncology, biology, physics.

[27]  Lei Dong,et al.  Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. , 2008, International journal of radiation oncology, biology, physics.

[28]  E. Yorke,et al.  Use of normal tissue complication probability models in the clinic. , 2010, International journal of radiation oncology, biology, physics.

[29]  A. Hanlon,et al.  The radiation doses to erectile tissues defined with magnetic resonance imaging after intensity-modulated radiation therapy or iodine-125 brachytherapy. , 2004, International journal of radiation oncology, biology, physics.

[30]  M. Goitein,et al.  Tolerance of normal tissue to therapeutic irradiation. , 1991, International journal of radiation oncology, biology, physics.

[31]  D. Spelbring,et al.  A method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy. , 1995, International journal of radiation oncology, biology, physics.

[32]  Radhe Mohan,et al.  Characterization of rectal normal tissue complication probability after high-dose external beam radiotherapy for prostate cancer. , 2004, International journal of radiation oncology, biology, physics.

[33]  C. Fiorino,et al.  Emptying the rectum before treatment delivery limits the variations of rectal dose - volume parameters during 3DCRT of prostate cancer. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[34]  A. Hanlon,et al.  Intensity-modulated radiotherapy with MRI simulation to reduce doses received by erectile tissue during prostate cancer treatment. , 2004, International journal of radiation oncology, biology, physics.

[35]  L. Incrocci,et al.  Incidence, etiology, and therapy for erectile dysfunction after external beam radiotherapy for prostate cancer. , 2002, Urology.

[36]  M. Keyes,et al.  Impact of neoadjuvant androgen ablation and other factors on late toxicity after external beam prostate radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[37]  A. Hanlon,et al.  Diabetes mellitus: a predictor for late radiation morbidity. , 1999, International journal of radiation oncology, biology, physics.

[38]  M. Zelefsky,et al.  Long term tolerance of high dose three‐dimensional conformal radiotherapy in patients with localized prostate carcinoma , 1999, Cancer.

[39]  W. Butler,et al.  A comparison of radiation dose to the neurovascular bundles in men with and without prostate brachytherapy-induced erectile dysfunction. , 2000, International journal of radiation oncology, biology, physics.

[40]  R. Mohan,et al.  Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. , 2002, International journal of radiation oncology, biology, physics.

[41]  Joseph O Deasy,et al.  Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. , 2010, International journal of radiation oncology, biology, physics.

[42]  Joos V Lebesque,et al.  Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: normal tissue complication probability modeling. , 2006, International journal of radiation oncology, biology, physics.

[43]  R. Crevoisier,et al.  Benefit of IMRT in High Dose Prostate Cancer Radiotherapy , 2010 .

[44]  Sambasivarao Damaraju,et al.  Association of DNA Repair and Steroid Metabolism Gene Polymorphisms with Clinical Late Toxicity in Patients Treated with Conformal Radiotherapy for Prostate Cancer , 2006, Clinical Cancer Research.

[45]  Radiothérapie de conformation avec modulation d’intensité dans le cancer de prostate : vers un nouveau standard , 2009 .

[46]  Adenocarcinoma of the prostate treated with external-beam radiation therapy: 5-year minimum follow-up. , 1990, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[47]  Franca Foppiano,et al.  Rectal dose-volume constraints in high-dose radiotherapy of localized prostate cancer. , 2003, International journal of radiation oncology, biology, physics.

[48]  Margie Hunt,et al.  Intensity-modulated radiation therapy: supportive data for prostate cancer. , 2008, Seminars in radiation oncology.

[49]  Steve Webb,et al.  Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: using data from a randomised controlled trial of conformal radiotherapy in prostate cancer (MRC RT01, ISRCTN47772397). , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[50]  R. Pötter,et al.  Rectal sequelae after conformal radiotherapy of prostate cancer: dose-volume histograms as predictive factors. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[51]  M. Zelefsky,et al.  Dosimetric and anatomic indicators of late rectal toxicity after high-dose intensity modulated radiation therapy for prostate cancer. , 2008, Medical physics.

[52]  D. Kuban,et al.  Erectile dysfunction and radiation dose to penile base structures: a lack of correlation. , 2004, International journal of radiation oncology, biology, physics.

[53]  A. Hanlon,et al.  Long-term androgen deprivation increases Grade 2 and higher late morbidity in prostate cancer patients treated with three-dimensional conformal radiation therapy. , 2005, International journal of radiation oncology, biology, physics.

[54]  P. Fransson,et al.  Prospective evaluation of urinary and intestinal side effects after BeamCath stereotactic dose-escalated radiotherapy of prostate cancer. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[55]  C. De Wagter,et al.  Late radiotherapy-induced lower intestinal toxicity (RILIT) of intensity-modulated radiotherapy for prostate cancer: the need for adapting toxicity scales and the appearance of the sigmoid colon as co-responsible organ for lower intestinal toxicity. , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[56]  R. T. Ten Haken,et al.  Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[57]  Gabor Fichtinger,et al.  Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gray with IMRT: early results of a phase I NCI study , 2007, Radiation oncology.

[58]  S. Fosså,et al.  Normal tissue complication probabilities correlated with late effects in the rectum after prostate conformal radiotherapy. , 1999, International journal of radiation oncology, biology, physics.

[59]  Lei Dong,et al.  Fit of a Generalized Lyman Normal-Tissue Complication Probability (NTCP) Model to Grade ≥ 2 Late Rectal Toxicity Data From Patients Treated on Protocol RTOG 94-06 , 2007 .

[60]  C. Fiorino,et al.  Clinical and dosimetric predictors of late rectal toxicity after conformal radiation for localized prostate cancer: results of a large multicenter observational study. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[61]  Yoshiya Yamada,et al.  Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. , 2008, International journal of radiation oncology, biology, physics.

[62]  R. Mohan,et al.  Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. , 1991, International journal of radiation oncology, biology, physics.

[63]  Steve Webb,et al.  Dose-volume constraints to reduce rectal side effects from prostate radiotherapy: evidence from MRC RT01 Trial ISRCTN 47772397. , 2010, International journal of radiation oncology, biology, physics.

[64]  L. Incrocci Radiation therapy for prostate cancer and erectile (dys)function: The role of imaging , 2005, Acta oncologica.

[65]  J. Fowler,et al.  Late outcomes following hypofractionated conformal radiotherapy vs. standard fractionation for localized prostate cancer: a nonrandomized contemporary comparison. , 2009, International journal of radiation oncology, biology, physics.

[66]  Di Yan,et al.  Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. , 2007, International journal of radiation oncology, biology, physics.

[67]  F. Saad,et al.  Natural history and treatment of bone complications in prostate cancer. , 2006, European urology.

[68]  R Mohan,et al.  Clinically relevant optimization of 3-D conformal treatments. , 1992, Medical physics.

[69]  J. Purdy,et al.  Use of benchmark dose-volume histograms for selection of the optimal technique between three-dimensional conformal radiation therapy and intensity-modulated radiation therapy in prostate cancer. , 2006, International journal of radiation oncology, biology, physics.

[70]  Daniel W. Miller,et al.  Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. , 2005, JAMA.

[71]  W. Lee,et al.  Radiation dose to the neurovascular bundles or penile bulb does not predict erectile dysfunction after prostate brachytherapy. , 2002, Brachytherapy.

[72]  P. Koper,et al.  Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. , 2005, International journal of radiation oncology, biology, physics.

[73]  B. Dubray,et al.  Probabilités de lésion des organes à risque : historique et principaux modèles mathématiques d’estimation , 2010 .

[74]  G. Sanguineti,et al.  Dose-volume effects for normal tissues in external radiotherapy: pelvis. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[75]  M. Sydes,et al.  Late Gastrointestinal Toxicity After Dose-Escalated Conformal Radiotherapy for Early Prostate Cancer: Results From the UK Medical Research Council RT01 Trial (ISRCTN47772397) , 2010, International journal of radiation oncology, biology, physics.

[76]  J. Lyman Complication Probability as Assessed from Dose-Volume Histograms , 1985 .

[77]  Roberto Orecchia,et al.  Finding dose-volume constraints to reduce late rectal toxicity following 3D-conformal radiotherapy (3D-CRT) of prostate cancer. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[78]  Riccardo Calandrino,et al.  Significant correlation between rectal DVH and late bleeding in patients treated after radical prostatectomy with conformal or conventional radiotherapy (66.6-70.2 Gy). , 2002, International journal of radiation oncology, biology, physics.

[79]  D. Dearnaley,et al.  Optimization of coplanar six-field techniques for conformal radiotherapy of the prostate. , 2000, International journal of radiation oncology, biology, physics.

[80]  A Pollack,et al.  Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. , 2000, International journal of radiation oncology, biology, physics.

[81]  A G Macdonald,et al.  Avascular necrosis of the femoral head in patients with prostate cancer treated with cyproterone acetate and radiotherapy. , 2001, Clinical oncology (Royal College of Radiologists (Great Britain)).

[82]  R. Mohan,et al.  Comparison of rectal dose-wall histogram versus dose-volume histogram for modeling the incidence of late rectal bleeding after radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[83]  G J Kutcher,et al.  Late rectal bleeding after conformal radiotherapy of prostate cancer. II. Volume effects and dose-volume histograms. , 2001, International journal of radiation oncology, biology, physics.

[84]  J. Lebesque,et al.  Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. , 2008, International journal of radiation oncology, biology, physics.

[85]  J. Purdy,et al.  Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: findings from a prospective, multi-institutional, phase I/II dose-escalation study. , 2004, International journal of radiation oncology, biology, physics.