Segregation of serotonin 5‐HT2A and 5‐HT3 receptors in inhibitory circuits of the primate cerebral cortex

An emerging concept of cortical network organization is that distinct segments of the pyramidal neuron tree are controlled by functionally diverse inhibitory microcircuits. We compared the expression of two serotonin receptor subtypes, the G‐protein‐coupled 5‐hydroxytryptamine2A receptors and the ion‐channel gating 5‐HT3 receptors, in cortical neuron types, which control these microcircuits. Here we show, using light and electron microscopic immunocytochemical techniques, that 5‐HT2A receptors are segregated from 5‐HT3 receptors in the macaque cerebral cortex. 5‐HT2A receptor immunolabel was found in pyramidal cells and also in GABAergic interneurons known to specialize in the perisomatic inhibition of pyramidal cells: large and medium‐size parvalbumin‐ and calbindin‐containing interneurons. In contrast, 5‐HT3 label was only present in small GABA‐, substance P receptor‐, and calbindin‐containing neurons and in medium‐size calretinin‐containing neurons: interneurons known to preferentially target the dendrites of pyramidal cells. This cellular segregation indicates a serotonin‐receptor‐specific segmentation of the GABAergic inhibitory actions along the pyramidal neuron tree. J. Comp. Neurol. 417:337–348, 2000. © 2000 Wiley‐Liss, Inc.

[1]  B. Costall,et al.  5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue , 1989, Nature.

[2]  H. Meltzer MECHANISM OF ACTION OF ATYPICAL ANTIPSYCHOTIC DRUGS , 2002 .

[3]  P S Goldman-Rakic,et al.  Quantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey , 1989, The Journal of comparative neurology.

[4]  T. Kaneko,et al.  Immunocytochemical localization of rat substance P receptor in the striatum , 1993, Neuroscience Letters.

[5]  L. Tecott,et al.  Nervous system distribution of the serotonin 5-HT3 receptor mRNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Lowinson,et al.  Presynaptic dopamine release is enhanced by 5‐HT3 receptor activation in medial prefrontal cortex of freely moving rats , 1992, Synapse.

[7]  F. King,et al.  5-Hydroxytryptamine-3 Receptor Antagonists , 1993 .

[8]  J. McLean,et al.  Loss of cortical serotonin2A signal transduction in senescent rats: Reversal following inhibition of protein kinase C , 1995, Neuroscience.

[9]  A. Sahgal,et al.  The role of serotonergic-cholinergic interactions in the mediation of cognitive behaviour , 1995, Behavioural Brain Research.

[10]  Paul J. Harrison,et al.  The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain , 1995, Brain Research.

[11]  M. Molliver,et al.  Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex , 1988, Brain Research.

[12]  K. Kawa,et al.  Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. , 1994, Journal of neurophysiology.

[13]  R. Myers,et al.  Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. , 1991, Science.

[14]  J. DeFelipe,et al.  Synaptic relationships of serotonin-immunoreactive terminal baskets on GABA neurons in the cat auditory cortex. , 1991, Cerebral cortex.

[15]  B. Bunney,et al.  Mechanisms of action of atypical antipsychotic drugs Implications for novel therapeutic strategies for schizophrenia , 1991, Schizophrenia Research.

[16]  P. Jäkälä,et al.  Experimental studies on the role of serotonin in cognition , 1994, Progress in Neurobiology.

[17]  P. Goldman-Rakic,et al.  Dual role of substance P/GABA axons in cortical neurotransmission: synaptic triads on pyramidal cell spines and basket-like innervation of layer II-III calbindin interneurons in primate prefrontal cortex. , 1997, Cerebral cortex.

[18]  J. Kehne,et al.  The role of 5-HT2A receptors in antipsychotic activity. , 1995, Life sciences.

[19]  S. Peroutka,et al.  Molecular biology of serotonin (5‐HT) receptors , 1994, Synapse.

[20]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[21]  F. Bloom,et al.  The 5-HT3 Receptor Is Present in Different Subpopulations of GABAergic Neurons in the Rat Telencephalon , 1997, The Journal of Neuroscience.

[22]  U. Staubli,et al.  Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  U. Heinemann,et al.  Serotonin reduces inhibition via 5-HT1A receptors in area CA1 of rat hippocampal slices in vitro , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. DeFelipe,et al.  Synaptic Connections of Calretinin-Immunoreactive Neurons in the Human Neocortex , 1997, The Journal of Neuroscience.

[25]  R. North,et al.  5-HT3 receptors are membrane ion channels , 1989, Nature.

[26]  G. Aghajanian,et al.  Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons , 1993, Brain Research.

[27]  I. Martin,et al.  Molecular biology of 5-HT receptors , 1994, Neuropharmacology.

[28]  A. Deutch,et al.  Serotonin 5‐HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex , 1997, Synapse.

[29]  D. Wong,et al.  Localization of 5-HT3 receptors in the rat brain using [3H]LY278584 , 1991, Brain Research.

[30]  Gavin Kilpatrick,et al.  Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding , 1987, Nature.

[31]  T. Nishizaki,et al.  Differential effects of the serotonin receptors on cultured rat cerebral cortical neurons , 1997, Cellular and Molecular Life Sciences CMLS.

[32]  J. Shih,et al.  Molecular biology of serotonin (5-HT) receptors , 1991, Pharmacology Biochemistry and Behavior.

[33]  G. Aghajanian,et al.  Serotonin Induces Excitatory Postsynaptic Potentials in Apical Dendrites of Neocortical Pyramidal Cells , 1997, Neuropharmacology.

[34]  J. Palacios,et al.  Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors , 1987, Neuroscience.

[35]  M. Raiteri,et al.  5‐Hydroxytryptamine3 Receptors Sited on Cholinergic Axon Terminals of Human Cerebral Cortex Mediate Inhibition of Acetylcholine Release , 1992, Journal of neurochemistry.

[36]  R. Andrade,et al.  5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex , 1991, Neuroscience.

[37]  M. Pompeiano,et al.  Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. , 1994, Brain research. Molecular brain research.

[38]  J. Cassel,et al.  Serotonergic modulation of cholinergic function in the central nervous system: Cognitive implications , 1995, Neuroscience.

[39]  H. Ladinsky,et al.  Comparative anatomical distribution of serotonin 1A, 1D alpha and 2A receptor mRNAs in human brain postmortem. , 1996, Brain Research. Molecular Brain Research.

[40]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Barry L. Jacobs,et al.  Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal , 1979, Brain Research.

[42]  M. Pompeiano,et al.  Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites , 1990, Brain Research.

[43]  S. Patel,et al.  Autoradiographic distribution of serotonin2 receptors in rat brain. , 1983, European journal of pharmacology.

[44]  G. Martin,et al.  5-HT Receptor Classification and Nomenclature: Towards a Harmonization with the Human Genome , 1997, Neuropharmacology.

[45]  H. Ladinsky,et al.  Comparative anatomical distribution of serotonin 1A, 1Dα and 2A receptor mRNAs in human brain postmorten , 1996 .

[46]  A. Meneses,et al.  Effect of fluoxetine on learning and memory involves multiple 5-HT systems , 1995, Pharmacology Biochemistry and Behavior.

[47]  D. Morilak,et al.  Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain , 1993, Neuroscience.

[48]  D. Kupfer,et al.  Serotonin in Aging, Late-Life Depression, and Alzheimer's Disease: The Emerging Role of Functional Imaging , 1998, Neuropsychopharmacology.

[49]  G. Aghajanian,et al.  Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2 -activated interneuron , 1990, Brain Research.

[50]  L. JakabR,et al.  霊長類大脳皮質の5‐ヒドロキシトリプタミン2Aセロトニン受容体 錐体細胞先端樹状突起での幻覚剤及び抗精神病剤の作用部位 , 1998 .

[51]  G. Aghajanian,et al.  LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. , 1996, The Journal of pharmacology and experimental therapeutics.

[52]  T. Kaneko,et al.  Morphological and chemical characteristics of substance P receptor-immunoreactive neurons in the rat neocortex , 1994, Neuroscience.

[53]  F. Bloom,et al.  The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus , 1996, Brain Research.

[54]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[55]  B. Costall,et al.  The effects of ondansetron, a 5-HT3 receptor antagonist, on cognition in rodents and primates , 1990, Pharmacology Biochemistry and Behavior.

[56]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors , 1985, Brain Research.

[57]  A I Basbaum,et al.  Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.

[59]  N. Ropert,et al.  Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. , 1991, The Journal of physiology.

[60]  V. Haroutunian,et al.  Excessive serotonin release, not depletion, leads to memory impairments in rats. , 1996, European journal of pharmacology.

[61]  P S Goldman-Rakic,et al.  5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Goldman-Rakic,et al.  Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy , 1996, The Journal of comparative neurology.

[63]  M. Buhot Serotonin receptors in cognitive behaviors , 1997, Current Opinion in Neurobiology.

[64]  J. Pearce,et al.  Acquisition of Conditioned Inhibition in Rats is Impaired by Ablation of Serotoninergic Pathways , 1996, The European journal of neuroscience.

[65]  P. Goldman-Rakic,et al.  Distribution and neurochemical character of substance P receptor (SPR)‐immunoreactive striatal neurons of the macaque monkey: Accumulation of SP fibers and SPR neurons and dendrites in “striocapsules” encircling striosomes , 1996, The Journal of comparative neurology.

[66]  J. Rogers,et al.  Calretinin in rat brain: An immunohistochemical study , 1992, Neuroscience.

[67]  Paul J. Harrison,et al.  The effects of clozapine and haloperidol on serotonin-1A, -2A and -2C receptor gene expression and serotonin metabolism in the rat forebrain , 1996, Neuroscience.

[68]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[69]  D. Wright,et al.  Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain , 1995, The Journal of comparative neurology.

[70]  M. Morales,et al.  Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. , 1996, Brain research. Molecular brain research.

[71]  L. C. Katz,et al.  Modulation of Intrinsic Circuits by Serotonin 5-HT3Receptors in Developing Ferret Visual Cortex , 1997, The Journal of Neuroscience.

[72]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[73]  A. Greenshaw Behavioural pharmacology of 5-HT3 receptor antagonists: a critical update on therapeutic potential. , 1993, Trends in pharmacological sciences.

[74]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.