Optical flow estimation in the presence of fast or discontinuous motion.

vii Statement of Originality ix

[1]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[2]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[3]  Ivan Laptev,et al.  Galilean-diagonalized spatio-temporal interest operators , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  D. Cremers,et al.  Duality TV-L1 flow with fundamental matrix prior , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[6]  Shrinivas J. Pundlik,et al.  Joint tracking of features and edges , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[8]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Hans-Hellmut Nagel,et al.  Estimation of Optical Flow Based on Higher-Order Spatiotemporal Derivatives in Interlaced and Non-Interlaced Image Sequences , 1995, Artif. Intell..

[10]  Hans-Hellmut Nagel,et al.  Displacement vectors derived from second-order intensity variations in image sequences , 1983, Comput. Vis. Graph. Image Process..

[11]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[12]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[13]  Tieniu Tan,et al.  A compact optical flowbased motion representation for real-time action recognition in surveillance scenes , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[14]  Li Xu,et al.  A Segmentation Based Variational Model for Accurate Optical Flow Estimation , 2008, ECCV.

[15]  Chandra Kambhamettu,et al.  Curvature-Based Algorithms for Nonrigid Motion and Correspondence Estimation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Roland Göcke,et al.  Optical flow estimation using Fourier Mellin Transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[19]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[20]  Naoya Ohta,et al.  Movement Vector Detection with Reliability Indices , 1990, MVA.

[21]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[22]  Kostas Daniilidis,et al.  Optical Flow Computation in the Log-Polar-Plane , 1995, CAIP.

[23]  Bernd Jähne,et al.  Tensor-based image sequence processing techniques for the study of dynamical processes , 1998 .

[24]  Naoya Ohta Image movement detection with reliability indices , 1991 .

[25]  M. Brooks,et al.  A new combination of local and global constraints for optical flow computation , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[26]  Bernd Jähne,et al.  An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections , 2007, DAGM-Symposium.

[27]  Eli Shechtman,et al.  Space-Time Behavior-Based Correlation-OR-How to Tell If Two Underlying Motion Fields Are Similar Without Computing Them? , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[29]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[30]  Eero P. Simoncelli Bayesian multi-scale differential optical flow , 1999 .

[31]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[32]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[33]  Rudolf Mester,et al.  A Statistical Confidence Measure for Optical Flows , 2008, ECCV.

[34]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[35]  Daniel Cremers,et al.  An Unbiased Second-Order Prior for High-Accuracy Motion Estimation , 2008, DAGM-Symposium.

[36]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Andrew Blake,et al.  Image Divergence and Deformation from Closed Curves , 1997, Int. J. Robotics Res..

[38]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[39]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[40]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[41]  Cheng Lei,et al.  Optical flow estimation on coarse-to-fine region-trees using discrete optimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[42]  Michael J. Black,et al.  Mixture models for optical flow computation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[44]  Massimo Tistarelli,et al.  Multiple Constraints to Compute Optical Flow , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Daniel P. Huttenlocher,et al.  Learning for Optical Flow Using Stochastic Optimization , 2008, ECCV.

[46]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[48]  R. Gregory,et al.  How Bees Exploit Optic Flow: Behavioural Experiments and Neural Models: Discussion , 1992 .

[49]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[50]  Alessandro Verri,et al.  Computing optical flow from an overconstrained system of linear algebraic equations , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[51]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[52]  Giulio Sandini,et al.  On the Advantages of Polar and Log-Polar Mapping for Direct Estimation of Time-To-Impact from Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Michael J. Brooks,et al.  Discontinuity-Preserving Optical Flow Computation by a Dynamic Overdetermined System , 2007, 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007).

[55]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Different Scenes , 2008, ECCV.