Kernel-Based Integration of Genomic Data Using Semidefinite Programming

[1]  D. Holste,et al.  Does mapping reveal correlation between gene expression and protein–protein interaction? , 2003, Nature Genetics.

[2]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[3]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[4]  Li Liao,et al.  Combining pairwise sequence similarity and support vector machines for remote protein homology detection , 2002, RECOMB '02.

[5]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[6]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[7]  Jason Weston,et al.  Gene functional classification from heterogeneous data , 2001, RECOMB.

[8]  M. Kanehisa,et al.  Extraction of correlated gene clusters by multiple graph comparison. , 2001, Genome informatics. International Conference on Genome Informatics.

[9]  Gunnar Rätsch,et al.  Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites , 2000, German Conference on Bioinformatics.

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[12]  R. Durbin,et al.  Pfam: A comprehensive database of protein domain families based on seed alignments , 1997, Proteins.

[13]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[14]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.