The Role of the Dust in Primeval Galaxies: A Simple Physical Model for Lyman Break Galaxies and Lyα Emitters

We explore the onset of star formation in the early universe, exploiting the observations of high-redshift LBGs and Lyα emitters (LAEs), in the framework of the galaxy formation scenario elaborated by Granato and coworkers, already successfully tested against the wealth of data on later evolutionary stages. Complementing the model with a simple, physically plausible recipe for the evolution of dust attenuation in metal-poor galaxies, we reproduce the LFs of LBGs and of LAEs at different redshifts. This recipe yields a much faster increase with galactic age of attenuation in more massive galaxies, endowed with higher SFRs. These objects have therefore shorter lifetimes in the LAE and LBG phases and are more easily detected in the dusty submillimeter-bright (SMB) phase. The short UV-bright lifetimes of massive objects strongly mitigate the effect of the fast increase of the massive halo density with decreasing redshift, thus accounting for the weaker evolution of the LBG LF, compared to that of the halo mass function, and the even weaker evolution between z ≈ 6 and z ≈ 3 of the LAE LF. The much lower fraction of LBGs hosting detectable nuclear activity, compared to SMB galaxies, comes out naturally from the evolutionary sequence yielded by the model, which features the coevolution of galaxies and active nuclei. In this framework LAEs are on the average expected to be younger, with lower stellar masses, more compact, and associated with less massive halos than LBGs. Finally, we show that the IGM can be completely reionized at redshift z ≈ 6-7 by massive stars shining in protogalactic spheroids with halo masses from a few times 1010 to a few times 1011 M☉, showing up as faint LBGs with magnitude in the range -17 ≲ M1350 ≲ -20, without resorting to any special stellar IMF.

[1]  S. Finkelstein,et al.  The Ages and Masses of Lyα Galaxies at z ~ 4.5 , 2007 .

[2]  A. Fontana,et al.  A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample , 2007 .

[3]  A. Fontana,et al.  Physical properties of z ~ 4 LBGs: differences between galaxies with and without Lyα emission , 2007, astro-ph/0703013.

[4]  K. Aoki,et al.  Differential evolution of the UV luminosity function of Lyman break galaxies from z ∼ 5 to 3* , 2007, astro-ph/0701841.

[5]  M. Bremer,et al.  Discovery of a single faint AGN in a large sample of z > 5 Lyman break galaxies , 2007, astro-ph/0701724.

[6]  M. Dijkstra,et al.  The impact of The IGM on high-redshift Lyα emission lines , 2007, astro-ph/0701667.

[7]  Z. Haiman,et al.  Luminosity functions of Lyα emitting galaxies and cosmic reionization of hydrogen , 2006, astro-ph/0611195.

[8]  M. Lacy,et al.  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[9]  M. Lacy,et al.  A New Measurement of the Stellar Mass Density at z ≈ 5: Implications for the Sources of Cosmic Reionization , 2006, astro-ph/0604250.

[10]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[11]  J. Rhoads,et al.  Optical-to-Mid-Infrared Observations of Lyα Galaxies at z ≈ 5 in the Hubble Ultra Deep Field: A Young and Low-Mass Population , 2007 .

[12]  R. Bouwens,et al.  Spectroscopy of z ~ 6 i-Dropout Galaxies: Frequency of Lyα Emission and the Sizes of Lyα-emitting Galaxies , 2006, astro-ph/0612454.

[13]  M. Magliocchetti,et al.  A highly obscured and strongly clustered galaxy population discovered with the Spitzer Space Telescope , 2006, astro-ph/0611409.

[14]  Jia-Sheng Huang,et al.  The Stellar Population of Lyα-emitting Galaxies at z ~ 5.7 , 2006, astro-ph/0610572.

[15]  T. Morokuma,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[16]  K. Nandra,et al.  The X-ray emission of Lyman break galaxies , 2006, astro-ph/0609123.

[17]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[18]  K. Glampedakis,et al.  Monthly notices letters. L74. Elastic or magnetic? A toy model for global magnetar oscillations with implications for QPOs during flares , 2006 .

[19]  S. Okamura,et al.  Luminosity Functions of Lyman Break Galaxies at z ~ 4 and z ~ 5 in the Subaru Deep Field , 2006, astro-ph/0608512.

[20]  Garth D. Illingworth,et al.  Rapid evolution of the most luminous galaxies during the first 900 million years , 2006, Nature.

[21]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.

[22]  P. Schneider,et al.  GaBoDS: The Garching-Bonn Deep Survey VIII. Lyman-break galaxies in the ESO Deep Public Survey , 2006, astro-ph/0606578.

[23]  K. Aoki,et al.  Deficiency of Large Equivalent Width Lyα Emission in Luminous Lyman Break Galaxies at z ~ 5-6? , 2006, astro-ph/0605289.

[24]  Rodger I. Thompson,et al.  Star Formation History of the Hubble Ultra Deep Field: Comparison with the Hubble Deep Field-North , 2006, astro-ph/0605060.

[25]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[26]  S. Okamura,et al.  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.

[27]  L. Silva,et al.  QUASAR LUMINOSITY FUNCTIONS FROM JOINT EVOLUTION OF BLACK HOLES AND HOST GALAXIES , 2006 .

[28]  K. Schawinski,et al.  The Physical Nature of Lyα-emitting Galaxies at z = 3.1 , 2006, astro-ph/0603244.

[29]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[30]  L. Silva,et al.  The growth of the nuclear black holes in submillimetre galaxies , 2006, astro-ph/0602310.

[31]  P. Salucci,et al.  New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation , 2006, astro-ph/0601577.

[32]  O. Ilbert,et al.  Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ∼ 1 , 2006, astro-ph/0601123.

[33]  S. Okamura,et al.  Clustering of Lyman Break Galaxies at z = 4 and 5 in the Subaru Deep Field: Luminosity Dependence of the Correlation Function Slope , 2005, astro-ph/0509564.

[34]  Astrophysics,et al.  Simulations of Dust in Interacting Galaxies. I. Dust Attenuation , 2005, astro-ph/0503135.

[35]  Dwingeloo,et al.  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[36]  R. Bouwens,et al.  Luminosity functions and star formation rates at z ∼ 6–10: Galaxy buildup in the reionization age , 2005, astro-ph/0510697.

[37]  J. Dunlop,et al.  Linking Stellar Mass and Star Formation in Spitzer MIPS 24 μm Galaxies , 2005, astro-ph/0510070.

[38]  H. Ferguson,et al.  The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ⩽ z ⩽ 5.5 from the GOODS Survey , 2005, astro-ph/0508090.

[39]  C. Conselice,et al.  Infrared Luminous Lyman Break Galaxies: A Population that Bridges LBGs and SCUBA Galaxies , 2005, astro-ph/0507685.

[40]  D. M. Alexander,et al.  The Relationship between Stellar and Black Hole Mass in Submillimeter Galaxies , 2005, astro-ph/0507610.

[41]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[42]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[43]  G. Granato,et al.  Dynamical and Photometric Imprints of Feedback Processes on the Formation and Evolution of E/S0 Galaxies , 2005, astro-ph/0504600.

[44]  W. Brandt,et al.  Rapid growth of black holes in massive star-forming galaxies , 2005, Nature.

[45]  Cambridge,et al.  Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005, astro-ph/0502385.

[46]  K. Meisenheimer,et al.  The expected abundance of Lyman-α emitting primeval galaxies I. General model predictions , 2005, astro-ph/0312363.

[47]  V. Buat,et al.  VLT narrow-band photometry in the Lyman continuum of two galaxies at z ∼ 3 : Limits to the escape of ionizing flux , 2005, astro-ph/0501382.

[48]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[49]  E. al.,et al.  The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6 , 2004, astro-ph/0407542.

[50]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[51]  I. Smail,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 CLUSTERING OF SUBMILLIMETER-SELECTED GALAXIES , 2004 .

[52]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[53]  Italy.,et al.  Observational tests of the evolution of spheroidal galaxies and predictions for SIRTF/Spitzer cosmological surveys , 2004, astro-ph/0403166.

[54]  Padova,et al.  Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.

[55]  Michael R. Santos Probing reionization with Lyman α emission lines , 2003, astro-ph/0308196.

[56]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[57]  H. Mo,et al.  Galaxy formation in pre-processed dark haloes , 2003, astro-ph/0311459.

[58]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[59]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[60]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[61]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[62]  Y. Jing,et al.  The growth and structure of dark matter haloes , 2002, astro-ph/0204108.

[63]  S. Okamura,et al.  Subaru Deep Survey. II. Luminosity Functions and Clustering Properties of Lyα Emitters at z = 4.86 in the Subaru Deep Field , 2002, astro-ph/0202204.

[64]  S. Ravindranath,et al.  X-Ray Properties of Lyman Break Galaxies in the Great Observatories Origins Deep Survey , 2002, astro-ph/0409600.

[65]  Z. Haiman The Detectability of High-Redshift Lyα Emission Lines prior to the Reionization of the Universe , 2002, astro-ph/0205410.

[66]  L. Danese,et al.  Chemical evolution in a model for the joint formation of quasars and spheroids , 2002, astro-ph/0203506.

[67]  R. Sheth,et al.  An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.

[68]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[69]  C. Steidel,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 , 2000, astro-ph/0008283.

[70]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[71]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[72]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[73]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[74]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[75]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[76]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[77]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[78]  L. Cowie,et al.  High-z Lyα Emitters. I. A Blank-Field Search for Objects near Redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA 22 , 1998, astro-ph/9801003.

[79]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[80]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[81]  M. Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996, astro-ph/9604140.

[82]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[83]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[84]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[85]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[86]  P. Shapiro,et al.  COSMOLOGICAL H II REGIONS AND THE PHOTOIONIZATION OF THE INTERGALACTIC MEDIUM. , 1986 .

[87]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[88]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .