Multi-oracle interactive protocols with space bounded verifiers

It is proved that both in the multiprover model of M. Ben-or et al. (Proc. 20th Symp. Theory Comput., 1988, p.113-131) and in the the noisy oracle model of U. Feige et al. (Proc. CRYPTO 88) a finite-state verifier can accept any recursive language. The power of verifiers with simultaneous time bounds and space bounds is considered as well.<<ETX>>

[1]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[2]  John H. Reif,et al.  Multiple-person alternation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[3]  John H. Reif,et al.  Universal games of incomplete information , 1979, STOC.

[4]  Christos H. Papadimitriou,et al.  Games Against Nature (Extended Abstract) , 1983, IEEE Annual Symposium on Foundations of Computer Science.

[5]  John H. Reif,et al.  The Complexity of Two-Player Games of Incomplete Information , 1984, J. Comput. Syst. Sci..

[6]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[7]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[8]  Richard E. Ladner,et al.  Probabilistic Game Automata , 1986, J. Comput. Syst. Sci..

[9]  Avi Wigderson,et al.  Multi-prover interactive proofs: how to remove intractability assumptions , 2019, STOC '88.

[10]  Joe Kilian,et al.  Zero-knowledge with log-space verifiers , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  M. W. Shields An Introduction to Automata Theory , 1988 .

[12]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[13]  Anne Condon,et al.  Computational models of games , 1989, ACM distinguished dissertations.