The pyrolysis of lignin: Pathway and interaction studies

[1]  C. Russo,et al.  Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide , 2020 .

[2]  Shubin Wu,et al.  Effects of temperature and atmosphere on the formation of oligomers during the pyrolysis of lignin , 2020 .

[3]  Yi Wang,et al.  Assessing the chemical composition of heavy components in bio-oils from the pyrolysis of cellulose, hemicellulose and lignin at slow and fast heating rates , 2020 .

[4]  S. Niksa bio-FLASHCHAIN® theory for rapid devolatilization of biomass 1. Lignin devolatilization , 2020, Fuel.

[5]  Hwai Chyuan Ong,et al.  Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin , 2019 .

[6]  Yi Wang,et al.  Evolution of Aromatic Structures during the Low-Temperature Electrochemical Upgrading of Bio-oil , 2019, Energy & Fuels.

[7]  Haiping Yang,et al.  Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures , 2019, Fuel.

[8]  N. Paterson,et al.  The primary products of cellulose pyrolysis in the absence of extraparticle reactions , 2019, Fuel.

[9]  Chun-Zhu Li,et al.  Oxidative pyrolysis of mallee wood biomass, cellulose and lignin , 2018 .

[10]  Yongping Yang,et al.  Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study , 2018 .

[11]  N. Paterson,et al.  Influence of temperature and particle size on structural characteristics of chars from Beechwood pyrolysis , 2018 .

[12]  K. Norinaga,et al.  Predicting molecular composition of primary product derived from fast pyrolysis of lignin with semi-detailed kinetic model , 2018 .

[13]  Hongwei Wu,et al.  Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures , 2017 .

[14]  Jie Yu,et al.  Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass , 2017 .

[15]  K. Cen,et al.  Mechanism study on the pyrolysis of a synthetic β-O-4 dimer as lignin model compound , 2017 .

[16]  H. Kawamoto Lignin pyrolysis reactions , 2017, Journal of Wood Science.

[17]  C. Xu,et al.  Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review , 2016 .

[18]  John Ralph,et al.  Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis , 2016, Angewandte Chemie.

[19]  Y. Kojima,et al.  Effect of pyrolysis temperature on the pyrolytic degradation mechanism of β-aryl ether linkages , 2016 .

[20]  T. J. Hilbers,et al.  Cellulose-Lignin interactions during slow and fast pyrolysis , 2015 .

[21]  S. Saka,et al.  Strong interactions during lignin pyrolysis in wood – A study by in situ probing of the radical chain reactions using model dimers , 2015 .

[22]  Shubin Wu,et al.  A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer , 2015 .

[23]  Tao Wu,et al.  Relationship between thermal behaviour of lignocellulosic components and properties of biomass. , 2014, Bioresource technology.

[24]  J. Zhao,et al.  Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS , 2014 .

[25]  Chao Liu,et al.  Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound , 2014 .

[26]  H. Lee,et al.  Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process , 2014, TheScientificWorldJournal.

[27]  Kwang Ho Kim,et al.  Formation of phenolic oligomers during fast pyrolysis of lignin , 2014 .

[28]  T. Elder Bond Dissociation Enthalpies of a Dibenzodioxocin Lignin Model Compound , 2013 .

[29]  Manuel Garcia-Perez,et al.  Secondary Vapor Phase Reactions of Lignin-Derived Oligomers Obtained by Fast Pyrolysis of Pine Wood , 2013 .

[30]  Paul J. Dauenhauer,et al.  Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass , 2012 .

[31]  Paul J. Dauenhauer,et al.  Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates , 2012 .

[32]  S. Saka,et al.  Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins , 2011 .

[33]  David P. Schmidt,et al.  Aerosol generation by reactive boiling ejection of molten cellulose , 2011 .

[34]  F. G. Calvo-Flores,et al.  Lignin as renewable raw material. , 2010, ChemSusChem.

[35]  Tiziano Faravelli,et al.  Detailed kinetic modeling of the thermal degradation of lignins , 2010 .

[36]  S. Salvador,et al.  Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? , 2009 .

[37]  Shiro Saka,et al.  Secondary reactions of lignin-derived primary tar components , 2008 .

[38]  D. T. Liang,et al.  In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin , 2006 .

[39]  Erich Adler,et al.  Lignin chemistry—past, present and future , 1977, Wood Science and Technology.

[40]  C. Roy,et al.  Production of monomeric phenols by thermochemical conversion of biomass: a review. , 2001, Bioresource technology.

[41]  A. C. Buchanan,et al.  Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. , 2000, The Journal of organic chemistry.

[42]  Kartic C. Khilar,et al.  Pyrolysis characteristics of biomass and biomass components. , 1996 .

[43]  R. Kandiyoti,et al.  Variable‐heating‐rate wire‐mesh pyrolysis apparatus , 1989 .