A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model

Abstract We directly construct a bilinear Backlund transformation (BT) of a (2+1)-dimensional Korteweg–de Vries-like model. The construction is based on a so-called quadrilinear representation. The resulting bilinear BT is in accordance with the auxiliary-independent-variable-involved one derived with the Bell-polynomial scheme. Moreover, by applying the gauge transformation and the Hirota perturbation technique, multisoliton solutions are iteratively computed.

[1]  Hui-Qin Hao,et al.  Dynamic behaviors of the breather solutions for the AB system in fluid mechanics , 2013 .

[2]  Alfred Ramani,et al.  Multilinear operators: the natural extension of Hirota's bilinear formalism , 1994, solv-int/9404006.

[3]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[4]  Johan Springael,et al.  Construction of Bäcklund Transformations with Binary Bell Polynomials , 1997 .

[5]  Mingshu Peng,et al.  Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model. , 2013, Chaos.

[6]  Xing Lü,et al.  Integrability with symbolic computation on the Bogoyavlensky–Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution , 2014 .

[7]  Johan Springael,et al.  On a direct bilinearization method : Kaup's higher-order water wave equation as a modified nonlocal Boussinesq equation , 1994 .

[8]  Xing Lü,et al.  Soliton behavior for a generalized mixed nonlinear Schrödinger model with N-fold Darboux transformation. , 2013, Chaos.

[9]  Colin Rogers,et al.  Bäcklund transformations and their applications , 1982 .

[10]  Johan Springael,et al.  Soliton Equations and Simple Combinatorics , 2008 .

[11]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[12]  Wen-Xiu Ma,et al.  A bilinear Bäcklund transformation of a (3+1) -dimensional generalized KP equation , 2012, Appl. Math. Lett..

[13]  David J. Kaup,et al.  A Bäcklund Transformation for a Higher Order Korteweg-De Vries Equation , 1977 .

[14]  Robert M. Miura,et al.  Bäcklund transformations, the inverse scattering method, solitons, and their applications : proceedings of the NSF Research Workshop on Contact Transformations, held in Nashville, Tennessee, 1974 , 1976 .

[15]  Fuhong Lin,et al.  Analytical study on a two-dimensional Korteweg–de Vries model with bilinear representation, Bäcklund transformation and soliton solutions , 2015 .

[16]  Bo Tian,et al.  Symbolic Computation Study of a Generalized Variable-Coefficient Two-Dimensional Korteweg-de Vries Model with Various External-Force Terms from Shallow Water Waves, Plasma Physics, and Fluid Dynamics , 2009 .

[17]  Bo Tian,et al.  Soliton solutions via auxiliary function method for a coherently-coupled model in the optical fiber communications , 2013 .

[18]  Johan Springael,et al.  On the Hirota Representation of Soliton Equations with One Tau-Function , 2001 .

[19]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[20]  Guoquan Zhou,et al.  Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials , 2014 .

[21]  Wenxiu Ma,et al.  Trilinear equations, Bell polynomials, and resonant solutions , 2013 .

[22]  Bo Tian,et al.  Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function , 2010 .

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[25]  J. Nimmo,et al.  The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form , 1984 .

[26]  Xing Lü,et al.  New bilinear Bäcklund transformation with multisoliton solutions for the (2+1)-dimensional Sawada–Kotera model , 2014 .

[27]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[28]  Deng-Shan Wang,et al.  Prolongation structures and matter-wave solitons in F=1 spinor Bose-Einstein condensate with time-dependent atomic scattering lengths in an expulsive harmonic potential , 2014, Commun. Nonlinear Sci. Numer. Simul..

[29]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[30]  Xing Lü,et al.  Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications , 2007 .

[31]  Lei Wang,et al.  Characteristics of the nonautonomous breathers and rogue waves in a generalized Lenells-Fokas equation , 2014 .

[32]  Bo Tian,et al.  Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose–Einstein condensates , 2008 .

[33]  Ye Tian,et al.  Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects , 2014, Appl. Math. Comput..

[34]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  B. Jones,et al.  Lecture notes in mathematics: rudiments of Riemann surfaces , 1971 .

[36]  Hu Xingbiao,et al.  Superposition formulae of a fifth order KdV equation and its modified equation , 1988 .

[37]  Yan-Ze Peng A New (2 + 1)-Dimensional KdV Equation and Its Localized Structures , 2010 .

[38]  Xing Lü,et al.  Bright-soliton collisions with shape change by intensity redistribution for the coupled Sasa-Satsuma system in the optical fiber communications , 2014, Commun. Nonlinear Sci. Numer. Simul..

[39]  Johan Springael,et al.  On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations , 2001 .

[40]  Yi Zhang,et al.  Hirota bilinear equations with linear subspaces of solutions , 2012, Appl. Math. Comput..