Prediction of Thermodynamic Properties and Phase Behavior of Fluids and Mixtures with the SAFT-γ Mie Group-Contribution Equation of State

Group contribution (GC) approaches are based on the premise that the properties of a molecule or a mixture can be determined from the appropriate contributions of the functional chemical groups present in the system of interest. Although this is clearly an approximation, GC methods can provide accurate estimates of the properties of many systems and are often used as predictive tools when experimental data are scarce or not available. Our focus is on the SAFT-γ Mie approach [Papaioannou, V.; Lafitte, T.; Avendano, C.; Adjiman, C. S.; Jackson, G.; Muller, E. A.; Galindo, A. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J. Chem. Phys. 2014, 140, 054107–29] which incorporates a detailed heteronuclear molecular model specifically designed for use as a GC thermodynamic platform. It is based on a formulation of the recent statistical associating fluid theory for Mie potentials of variable range, where a formal statistical–m...

[1]  George Jackson,et al.  Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. , 2014, The Journal of chemical physics.

[2]  M. C. Ramos,et al.  An examination of the excess thermodynamic properties of flexible molecules from a molecular modelling perspective , 2014 .

[3]  J. Vijande,et al.  Group-Contribution Method with Proximity Effect for PC-SAFT Molecular Parameters. 2. Application to Association Parameters: Primary Alcohols and Amines , 2014 .

[4]  George Jackson,et al.  Accurate statistical associating fluid theory for chain molecules formed from Mie segments. , 2013, The Journal of chemical physics.

[5]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes. , 2013, The journal of physical chemistry. B.

[6]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene , 2012 .

[7]  George Jackson,et al.  SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. , 2011, The journal of physical chemistry. B.

[8]  M. C. Ramos,et al.  Extending the GC-SAFT-VR approach to associating functional groups: Alcohols, aldehydes, amines and , 2011 .

[9]  E. A. Brignole,et al.  GCA-EoS: A SAFT group contribution model—Extension to mixtures containing aromatic hydrocarbons and associating compounds , 2011 .

[10]  Claire S. Adjiman,et al.  Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach , 2011 .

[11]  R. Lugo,et al.  Modeling Liquid–Liquid and Liquid–Vapor Equilibria of Binary Systems Containing Water with an Alkane, an Aromatic Hydrocarbon, an Alcohol or a Gas (Methane, Ethane, CO2 or H2S), Using Group Contribution Polar Perturbed-Chain Statistical Associating Fluid Theory , 2011 .

[12]  Frances E. Pereira,et al.  A duality-based optimisation approach for the reliable solution of (P, T) phase equilibrium in volume-composition space , 2010 .

[13]  S. T. Bowden,et al.  The temperature variation of orthobaric density difference in liquid‐vapour systems. IV. Fatty acids , 2010 .

[14]  Javier Vijande,et al.  Group-Contribution Method for the Molecular Parameters of the PC-SAFT Equation of State Taking into Account the Proximity Effect. Application to Nonassociated Compounds , 2010 .

[15]  F. Llovell,et al.  Capturing the solubility minima of n-alkanes in water by soft-SAFT. , 2009, The journal of physical chemistry. B.

[16]  Xiaoming Zhao,et al.  Surface Tension of 2,2-Dimethylbutane from (233 to 378) K , 2009 .

[17]  Clare McCabe,et al.  Developing a predictive group-contribution-based SAFT-VR equation of state , 2009 .

[18]  A. Mohammadi,et al.  Solubility of hydrocarbons in water: Experimental measurements and modeling using a group contribution with association equation of state (GCA-EoS) , 2009 .

[19]  Claire S. Adjiman,et al.  A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments , 2008 .

[20]  Jean-Charles de Hemptinne,et al.  Modeling Phase Equilibria of Asymmetric Mixtures Using a Group-Contribution SAFT (GC-SAFT) with a kij Correlation Method Based on London’s Theory. 1. Application to CO2 + n-Alkane, Methane + n-Alkane, and Ethane + n-Alkane Systems , 2008 .

[21]  I. Popa,et al.  Experimental results of and for binary mixtures (propylbenzene + an alkane or + an alkyl ethanoate) , 2008 .

[22]  I. Tsivintzelis,et al.  Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chain-Statistical Associating Fluid Theory (sPC-SAFT). 2. Liquid−Liquid Equilibria and Prediction of Monomer Fraction in Hydrogen Bonding Systems , 2008 .

[23]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .

[24]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[25]  A. Galindo,et al.  Modelling the phase equilibria and excess properties of the water + carbon dioxide binary mixture , 2007 .

[26]  A. Galindo,et al.  Phase equilibria, excess properties, and henry's constants of the water + carbon dioxide binary mixture , 2007 .

[27]  J. Ortega,et al.  Thermodynamic study of the mixtures (butylbenzene + an alkane or + an alkyl ethanoate): experimental and values , 2007 .

[28]  R. Gardas,et al.  PVT Property Measurements for Some Aliphatic Esters from (298 to 393) K and up to 35 MPa , 2007 .

[29]  S. Verevkin,et al.  Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes , 2006 .

[30]  George Jackson,et al.  Phase equilibria of associating fluids , 2006 .

[31]  P. Paricaud A general perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. , 2006, The Journal of chemical physics.

[32]  Juha-Pekka Pokki,et al.  Vapor Liquid Equilibrium for Six Binary Systems of C4-Hydrocarbons + 2-Propanone , 2006 .

[33]  Jean-Charles de Hemptinne,et al.  Application of group contribution SAFT equation of state (GC-SAFT) to model phase behaviour of light and heavy esters , 2005 .

[34]  M. Góral,et al.  IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater—Revised and Updated. Part 4. C6H14 Hydrocarbons with Water , 2005 .

[35]  F. J. Blas,et al.  Examination of the excess thermodynamic properties of n-alkane binary mixtures: a molecular approach. , 2005, The journal of physical chemistry. B.

[36]  M. Góral,et al.  IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater–Revised and Updated Part 1. C5 Hydrocarbons with Water , 2005 .

[37]  M. Góral,et al.  IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater—Revised and Updated. Part 2. Benzene with Water and Heavy Water , 2005 .

[38]  J. D. Hemptinne,et al.  Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT) , 2005 .

[39]  Juha-Pekka Pokki,et al.  Isothermal vapour-liquid equilibrium measurements for six binary systems of C4 hydrocarbons + 2-propanone , 2004 .

[40]  Jean-Noël Jaubert,et al.  VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method , 2004 .

[41]  T. Kamiyama,et al.  Enthalpies of Solution of Aliphatic Amines, Aliphatic Benzene, and Alkane in Dimethyl Sulfoxide at 298.15 K , 2004 .

[42]  Javier Vijande,et al.  Description of PVT behaviour of hydrofluoroethers using the PC-SAFT EOS , 2004 .

[43]  F. J. Blas,et al.  Excess properties of Lennard-Jones binary mixtures from computer simulation and theory , 2002 .

[44]  J. Corriou,et al.  Temperatures and enthalpies of (solid + solid) and (solid + liquid) transitions of n-alkanes , 2002 .

[45]  F. J. Blas Excess thermodynamic properties of chainlike mixtures. II. Self-associating systems: predictions from soft-SAFT and molecular simulation , 2002 .

[46]  M. Maisuria,et al.  Speeds of sound, isentropic compressibilities, and excess molar volumes of cycloalkane, alkanes and aromatic hydrocarbons at 303.15 K. I. Results for cycloalkane + cycloalkanes, and cycloalkane + alkanes , 2002 .

[47]  Jürgen Gmehling,et al.  Development of a Universal Group Contribution Equation of State. 2. Prediction of Vapor-Liquid Equilibria for Asymmetric Systems , 2002 .

[48]  W. V. Steele,et al.  Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, sec-Butylbenzene, tert-Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-ethyl-1,3-propanediol, 2,2,4-Trimethyl-1,3-pentanediol, and 1-Chloro-2-propanol , 2002 .

[49]  Ralf Dohrn,et al.  Thermophysical properties—Industrial directions , 2002 .

[50]  Ioannis G. Economou,et al.  Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures , 2002 .

[51]  Jürgen Gmehling,et al.  Development of an universal group contribution equation of state , 2001 .

[52]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[53]  Jürgen Gmehling,et al.  From UNIFAC to Modified UNIFAC (Dortmund) , 2001 .

[54]  J. Wisniak,et al.  Isobaric Phase Equilibria in the Binary Systems Ethyl 1,1-Dimethylethyl Ether + 1-hexene and + Cyclohexene at 94.00 kPa , 2001 .

[55]  S. Verevkin,et al.  Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties , 2000 .

[56]  Zhi‐Wu Yu,et al.  Volumetric properties of binary systems between tetralin and alkylbenzenes , 1999 .

[57]  J. Grolier,et al.  Excess molar enthalpies of (an alkanoic acid + n-heptane, or cyclohexane, or benzene) atT = 298.15 K☆ , 1999 .

[58]  Bingjian Zhang Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory , 1999 .

[59]  I. Mokbel,et al.  Low vapor pressures of 12 aromatic hydrocarbons. Experimental and calculated data using a group contribution method , 1998 .

[60]  George Jackson,et al.  THE THERMODYNAMICS OF MIXTURES AND THE CORRESPONDING MIXING RULES IN THE SAFT-VR APPROACH FOR POTENTIALS OF VARIABLE RANGE , 1998 .

[61]  E. A. Brignole,et al.  High pressure phase equilibrium modeling of mixtures containing associating compounds and gases , 1997 .

[62]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[63]  Ioannis G. Economou,et al.  Associating models and mixing rules in equations of state for water/hydrocarbon mixtures , 1997 .

[64]  R. Chirico,et al.  Vapor Pressure of Acetophenone, (±)-1,2-Butanediol, (±)-1,3-Butanediol, Diethylene Glycol Monopropyl Ether, 1,3-Dimethyladamantane, 2-Ethoxyethyl Acetate, Ethyl Octyl Sulfide, and Pentyl Acetate , 1996 .

[65]  David A. Fletcher,et al.  The United Kingdom Chemical Database Service , 1996, J. Chem. Inf. Comput. Sci..

[66]  E. A. Brignole,et al.  A group contribution equation of state for associating mixtures , 1996 .

[67]  A. Ruiz Excess enthalpies of (hexane + a carboxylic acid) , 1995 .

[68]  K. Růžička,et al.  Vapor pressures for a group of high-boiling alkylbenzenes under environmental conditions , 1994 .

[69]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[70]  I. Mokbel,et al.  Vapor pressure of 11 alkylbenzenes in the range 10−3 – 280 torr, correlation by equation of state , 1993 .

[71]  R. Eganhouse,et al.  Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes , 1992 .

[72]  J. Gmehling,et al.  PSRK: A Group Contribution Equation of State Based on UNIFAC , 1991 .

[73]  S. Murakami,et al.  Excess molar isobaric heat capacities of mixtures of 2-propanone with heptane, benzene, and trichloromethane at 298.15 K , 1990 .

[74]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[75]  G. Bernardo-Gil,et al.  Densities and refractive indices of pure organic acids as a function of temperature , 1990 .

[76]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[77]  K. Gubbins,et al.  Phase equilibria of associating fluids : spherical molecules with multiple bonding sites , 1988 .

[78]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[79]  D. Patterson,et al.  The w-shape concentration dependence of CEp and solution non-randomness: Ketones + normal and branched alkanes , 1987 .

[80]  D. Ambrose Vapour pressures of some aromatic hydrocarbons , 1987 .

[81]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[82]  J. Gmehling,et al.  A modified UNIFAC model. 1. Prediction of VLE, hE, and .gamma..infin. , 1987 .

[83]  D. Ambrose,et al.  Vapour pressures and critical temperatures and critical pressures of some alkanoic acids: C1 to C10 , 1987 .

[84]  H. Knapp,et al.  Measurements of VLE, hE and vE for binary mixtures of n-alkanes with n-alkylbenzenes , 1986 .

[85]  T. Boublík Background correlation functions in the hard sphere systems , 1986 .

[86]  J. Merlin,et al.  Mesure des pressions de vapeur d'hydrocarbures C10 A C18n-alcanes etn-alkylbenzenes dans le domaine 3-1000 pascal , 1986 .

[87]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[88]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[89]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[90]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[91]  G. M. Wilson,et al.  High‐temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane and n‐hexane , 1983 .

[92]  A. Teja,et al.  Phase equilibriums in the n-pentane + pent-1-ene system. 1. Critical states , 1983 .

[93]  E. Macedo,et al.  Vapor-liquid equilibrium for the binary systems ethyl acetate-acetic acid and ethyl propionate-propionic acid , 1982 .

[94]  D. Ambrose,et al.  Thermodynamic properties of organic oxygen compounds LI. The vapour pressures of some esters and fatty acids , 1981 .

[95]  E. F. Meyer,et al.  Cohesive energies in polar organic liquids. 4. n-Alkyl acetates , 1980 .

[96]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[97]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[98]  D. R. Douslin,et al.  Vapor-pressure relations for 15 hydrocarbons , 1974 .

[99]  J. Hales,et al.  Liquid densities from 293 to 490 K of nine aromatic hydrocarbons , 1972 .

[100]  N. Tatsumoto,et al.  Kinetic Studies of Intermolecular Hydrogen Bonding in Carboxylic Acids by Means of Ultrasonic Absorption Measurement. I. Fatty Acids , 1972 .

[101]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[102]  Tomáš Boublı́k,et al.  Hard‐Sphere Equation of State , 1970 .

[103]  J. Barker,et al.  Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids , 1967 .

[104]  W. Scheller,et al.  Isothermal vapor-liquid equilibrium data for the system n-heptane-n-valeric acid at 50, 75, and 100.degree. , 1967 .

[105]  F. Rossini,et al.  Physical Properties of the 17 Isomeric Hexenes.of the API Research Series , 1956 .

[106]  G. B. Miller,et al.  The Vapor Pressure of Monofluoroacetic Acid , 1955 .

[107]  F. Rossini,et al.  Physical Properties of n-Hexadecane, n-Decylcyclopentane, n-Decylcyclohexane, 1-Hexadecene and n-Decylbenzene , 1954 .

[108]  F. Rossini,et al.  Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons , 1950 .

[109]  F. Rossini,et al.  Vapor pressures and boiling points of sixty API-NBS hydrocarbons , 1949 .

[110]  B. Sage,et al.  Volumetric Behavior of 1-Butene. , 1946 .

[111]  R. B. Scott,et al.  Thermodynamic properties of 1,3-butadiene in the solid, liquid, and vapor states , 1945 .

[112]  C. W. Hoerr,et al.  SOLUBILITIES OF SOME NORMAL SATURATED ALIPHATIC HYDROCARBONS , 1944 .

[113]  A. W. Ralston,et al.  Boiling Points of n-Alkyl Acids , 1942 .

[114]  S. Benson Micromethod for Identification of Volatile Liqiuds: Vapor Pressures of Cyclopentane and the Pentenes , 1941 .

[115]  C. Buehler,et al.  PARACHOR STUDIES AT VARIOUS TEMPERATURES , 1937 .

[116]  W. F. Seyer THE DENSITY AND SURFACE TENSION OF THE ISOMERS OF 2-PENTENE AND 2-METHYL-2-BUTENE , 1931 .

[117]  C. C. Coffin,et al.  THE PREPARATION AND PHYSICAL PROPERTIES OF α-, β- AND γ-BUTYLENE AND NORMAL AND ISOBUTANE , 1928 .

[118]  J. B. Montón,et al.  Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa , 2008 .

[119]  Steen Skjold-Joergensen Group contribution equation of state (GC-EOS): a predictive method for phase equilibrium computations over wide ranges of temperature and pressures up to 30 MPa , 1988 .

[120]  U. Domańska,et al.  Solubility and vapour pressures in saturated solutions of high-molecular-weight hydrocarbons , 1987 .

[121]  M. Costas,et al.  Heat capacities of water + organic-solvent mixtures , 1985 .

[122]  S. Skjold-Jørgensen Gas solubility calculations. II. Application of a new group-contribution equation of state , 1984 .

[123]  M. D. Peña,et al.  Isothermal compressibility of benzene + n-hexane, + n-heptane, + n-octane, and + n-decane at 298.15, 308.15, 318.15, and 333.15 K , 1979 .

[124]  J. Linek,et al.  Gleichgewicht flüssigkeit-dampf XXXIV. System äthylbenzol-cumol-butylbenzol unter atmosphärischem druck , 1965 .

[125]  W. W. Sanders,et al.  Automatic Computation of Antoine Equation 31 Constants—Caproic and Caprylic Acids and Methyl Esters , 1957 .

[126]  A. E. Dunstan LXIX.—The relation between viscosity and chemical constitution. Part IX. The viscosity and fluidity of the aliphatic acids , 1915 .

[127]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[128]  S. Young,et al.  XC.—The vapour pressures, molecular volumes, and critical constants of ten of the lower esters , 1893 .