CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations
暂无分享,去创建一个
H. Hoekstra | T. Kitching | Y. Mellier | L. Miller | T. Schrabback | C. Heymans | E. Semboloni | K. Kuijken | M. Velander | L. Waerbeke | B. Rowe | H. Hildebrandt | J. Coupon | M. Kilbinger | T. Erben | L. Fu | M. Hudson | S. Vafaei | P. Simon | J. Harnois-D'eraps
[1] P. Peebles,et al. The Large-Scale Structure of the Universe , 2020 .
[2] B. Joachimi,et al. How well do third-order aperture mass statistics separate E- and B-modes? , 2013, 1311.7035.
[3] B. Schäfer,et al. Intrinsic ellipticity correlations of galaxies: models, likelihoods and interplay with weak lensing , 2013 .
[4] P. Valageas. Source-lens clustering and intrinsic-alignment bias of weak-lensing estimators , 2013, 1306.6151.
[5] Earl Lawrence,et al. THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.
[6] H. Hoekstra,et al. CFHTLenS: mapping the large-scale structure with gravitational lensing , 2013, 1303.1806.
[7] Yannick Mellier,et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.
[8] Ashley J. Ross,et al. Improved Primordial Non-Gaussianity Constraints from Measurements of Galaxy Clustering and the Integrated Sachs-Wolfe Effect , 2013, 1303.1349.
[9] Masanori Sato,et al. Impact of the non-Gaussian covariance of the weak lensing power spectrum and bispectrum on cosmological parameter estimation , 2013, 1301.3588.
[10] Benjamin Joachimi,et al. Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.
[11] Yannick Mellier,et al. CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.
[12] Yannick Mellier,et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.
[13] H. Hoekstra,et al. Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.
[14] Joop Schaye,et al. Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling , 2012, 1210.7303.
[15] Stefan Hilbert,et al. COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.
[16] L. Miller,et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.
[17] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.
[18] M. Takada,et al. Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix , 2012, 1207.6322.
[19] L. Waerbeke,et al. Gravitational lensing simulations - I. Covariance matrices and halo catalogues , 2012, 1202.2332.
[20] H. Hoekstra,et al. CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.
[21] H. Hoekstra,et al. Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.
[22] Joop Schaye,et al. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.
[23] M. Bartelmann. Gravitational lensing , 2010, 1010.3829.
[24] T. Schrabback,et al. Weak lensing from space: first cosmological constraints from three-point shear statistics★ , 2010, 1005.4941.
[25] P. Schneider,et al. COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.
[26] Astrophysics,et al. Controlling intrinsic-shear alignment in three-point weak lensing statistics , 2010, Astronomy & Astrophysics.
[27] Earl Lawrence,et al. THE COYOTE UNIVERSE. III. SIMULATION SUITE AND PRECISION EMULATOR FOR THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0912.4490.
[28] Yannick Mellier,et al. Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.
[29] Jean-Luc Starck,et al. Cosmological model discrimination with weak lensing , 2009 .
[30] C. Heymans,et al. Breaking the degeneracy: Optimal use of three-point weak lensing statistics , 2009, 0905.3726.
[31] David Higdon,et al. THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.
[32] P. Schneider,et al. The non-Gaussianity of the cosmic shear likelihood or how odd is the Chandra Deep Field South? , 2009, 0901.3269.
[33] D. Higdon,et al. THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.
[34] P. Astier,et al. Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5 ⋆ , 2008, 0810.5129.
[35] Tim Eifler,et al. Dependence of cosmic shear covariances on cosmology - Impact on parameter estimation , 2008, 0810.4254.
[36] Peter Schneider,et al. Sources of contamination to weak lensing three-point statistics: constraints from N-body simulations , 2008, 0802.3978.
[37] H. Hoekstra,et al. Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.
[38] H. Hoekstra,et al. Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.
[39] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[40] Kendrick M. Smith,et al. Cosmological information from lensed CMB power spectra , 2006, astro-ph/0607315.
[41] Carlos S. Frenk,et al. The large-scale structure of the Universe , 2006, Nature.
[42] P. Schneider,et al. E- and B-mode mixing from incomplete knowledge of the shear correlation , 2006, astro-ph/0604520.
[43] V. Springel,et al. The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.
[44] D. Munshi,et al. Cosmology with weak lensing surveys , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[45] L. King. Cosmic shear as a tool for precision cosmology: Minimising intrinsic galaxy alignment-lensing interference , 2005, astro-ph/0506441.
[46] P. Schneider,et al. Third-Order Aperture Mass Statistics of Cosmic Shear , 2004, Proceedings of the International Astronomical Union.
[47] U. Seljak,et al. Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.
[48] B. Jain,et al. Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.
[49] M. Lombardi,et al. The three-point correlation function of cosmic shear II. Relation to the bispectrum of the projected mass density and generalized third-order aperture measures , 2003, astro-ph/0308328.
[50] P. Schneider,et al. Analysis of two-point statistics of cosmic shear. II. Optimizing the survey geometry , 2003, astro-ph/0308119.
[51] G. Bernstein,et al. The skewness of the aperture mass statistic , 2003, astro-ph/0307393.
[52] P. Schneider,et al. The consequences of parity symmetry for higher-order statistics of cosmic shear and other polar fields , 2003, astro-ph/0305240.
[53] Y. Mellier,et al. Detection of Dark Matter Skewness in the VIRMOS-DESCART Survey: Implications for Ω0 , 2003, astro-ph/0302031.
[54] Masahiro Takada,et al. The Three-Point Correlation Function for Spin-2 Fields , 2002, astro-ph/0210261.
[55] M. Zaldarriaga,et al. Higher Order Moments of the Cosmic Shear and Other Spin-2 Fields , 2002, astro-ph/0208075.
[56] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[57] M. Lombardi,et al. The three-point correlation function of cosmic shear: I. The natural components , 2002, astro-ph/0207454.
[58] Y. Mellier,et al. Patterns in the weak shear 3-point correlation function , 2002, astro-ph/0201029.
[59] Y. Mellier,et al. B-modes in cosmic shear from source redshift clustering , 2001, astro-ph/0112441.
[60] T. Theuns,et al. Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.
[61] Y. Mellier,et al. Source-lens clustering effects on the skewness of the lensing convergence , 2000, astro-ph/0012200.
[62] J. Einasto. Large scale structure , 2000, astro-ph/0011332.
[63] H. Couchman,et al. A fitting formula for the non‐linear evolution of the bispectrum , 2000, astro-ph/0009427.
[64] S. Colombi,et al. Weak lensing predictions at intermediate scales , 2000, astro-ph/0009426.
[65] L. Moscardini,et al. Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.
[66] P. Schneider,et al. A NEW MEASURE FOR COSMIC SHEAR , 1997, astro-ph/9708143.
[67] J. Peacock,et al. Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.
[68] P. Schneider,et al. Detection of (dark) matter concentrations via weak gravitational lensing , 1996, astro-ph/9601039.
[69] N. Kaiser,et al. Mapping the dark matter in clusters , 1994, astro-ph/9407004.
[70] Nick Kaiser,et al. Weak gravitational lensing of distant galaxies , 1992 .
[71] J. Schmee. An Introduction to Multivariate Statistical Analysis , 1986 .
[72] Douglas H. Rudd,et al. The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .
[73] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .