CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations

Higher order, non-Gaussian aspects of the large-scale structure carry valuable information on structure formation and cosmology, which is complementary to second-order statistics. In this work, we measure second- and third-order weak-lensing aperture-mass moments from the Canada–France–Hawaii Lensing Survey (CFHTLenS) and combine those with cosmic microwave background (CMB) anisotropy probes. The third moment is measured with a significance of 2σ. The combined constraint on Σ8 = σ8(Ωm/0.27)α is improved by 10 per cent, in comparison to the second-order only, and the allowed ranges for Ωm and σ8 are substantially reduced. Including general triangles of the lensing bispectrum yields tighter constraints compared to probing mainly equilateral triangles. Second- and third-order CFHTLenS lensing measurements improve Planck CMB constraints on Ωm and σ8 by 26 per cent for flat Λ cold dark matter. For a model with free curvature, the joint CFHTLenS–Planck result is Ωm = 0.28 ± 0.02 (68 per cent confidence), which is an improvement of 43 per cent compared to Planck alone. We test how our results are potentially subject to three astrophysical sources of contamination: source-lens clustering, the intrinsic alignment of galaxy shapes, and baryonic effects. We explore future limitations of the cosmological use of third-order weak lensing, such as the non-linear model and the Gaussianity of the likelihood function.

[1]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 2020 .

[2]  B. Joachimi,et al.  How well do third-order aperture mass statistics separate E- and B-modes? , 2013, 1311.7035.

[3]  B. Schäfer,et al.  Intrinsic ellipticity correlations of galaxies: models, likelihoods and interplay with weak lensing , 2013 .

[4]  P. Valageas Source-lens clustering and intrinsic-alignment bias of weak-lensing estimators , 2013, 1306.6151.

[5]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[6]  H. Hoekstra,et al.  CFHTLenS: mapping the large-scale structure with gravitational lensing , 2013, 1303.1806.

[7]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[8]  Ashley J. Ross,et al.  Improved Primordial Non-Gaussianity Constraints from Measurements of Galaxy Clustering and the Integrated Sachs-Wolfe Effect , 2013, 1303.1349.

[9]  Masanori Sato,et al.  Impact of the non-Gaussian covariance of the weak lensing power spectrum and bispectrum on cosmological parameter estimation , 2013, 1301.3588.

[10]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[11]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[12]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[13]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[14]  Joop Schaye,et al.  Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling , 2012, 1210.7303.

[15]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[16]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[17]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[18]  M. Takada,et al.  Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix , 2012, 1207.6322.

[19]  L. Waerbeke,et al.  Gravitational lensing simulations - I. Covariance matrices and halo catalogues , 2012, 1202.2332.

[20]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[21]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[22]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[23]  M. Bartelmann Gravitational lensing , 2010, 1010.3829.

[24]  T. Schrabback,et al.  Weak lensing from space: first cosmological constraints from three-point shear statistics★ , 2010, 1005.4941.

[25]  P. Schneider,et al.  COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.

[26]  Astrophysics,et al.  Controlling intrinsic-shear alignment in three-point weak lensing statistics , 2010, Astronomy & Astrophysics.

[27]  Earl Lawrence,et al.  THE COYOTE UNIVERSE. III. SIMULATION SUITE AND PRECISION EMULATOR FOR THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0912.4490.

[28]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[29]  Jean-Luc Starck,et al.  Cosmological model discrimination with weak lensing , 2009 .

[30]  C. Heymans,et al.  Breaking the degeneracy: Optimal use of three-point weak lensing statistics , 2009, 0905.3726.

[31]  David Higdon,et al.  THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.

[32]  P. Schneider,et al.  The non-Gaussianity of the cosmic shear likelihood or how odd is the Chandra Deep Field South? , 2009, 0901.3269.

[33]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[34]  P. Astier,et al.  Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5 ⋆ , 2008, 0810.5129.

[35]  Tim Eifler,et al.  Dependence of cosmic shear covariances on cosmology - Impact on parameter estimation , 2008, 0810.4254.

[36]  Peter Schneider,et al.  Sources of contamination to weak lensing three-point statistics: constraints from N-body simulations , 2008, 0802.3978.

[37]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[38]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[39]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[40]  Kendrick M. Smith,et al.  Cosmological information from lensed CMB power spectra , 2006, astro-ph/0607315.

[41]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[42]  P. Schneider,et al.  E- and B-mode mixing from incomplete knowledge of the shear correlation , 2006, astro-ph/0604520.

[43]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[44]  D. Munshi,et al.  Cosmology with weak lensing surveys , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  L. King Cosmic shear as a tool for precision cosmology: Minimising intrinsic galaxy alignment-lensing interference , 2005, astro-ph/0506441.

[46]  P. Schneider,et al.  Third-Order Aperture Mass Statistics of Cosmic Shear , 2004, Proceedings of the International Astronomical Union.

[47]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[48]  B. Jain,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[49]  M. Lombardi,et al.  The three-point correlation function of cosmic shear II. Relation to the bispectrum of the projected mass density and generalized third-order aperture measures , 2003, astro-ph/0308328.

[50]  P. Schneider,et al.  Analysis of two-point statistics of cosmic shear. II. Optimizing the survey geometry , 2003, astro-ph/0308119.

[51]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003, astro-ph/0307393.

[52]  P. Schneider,et al.  The consequences of parity symmetry for higher-order statistics of cosmic shear and other polar fields , 2003, astro-ph/0305240.

[53]  Y. Mellier,et al.  Detection of Dark Matter Skewness in the VIRMOS-DESCART Survey: Implications for Ω0 , 2003, astro-ph/0302031.

[54]  Masahiro Takada,et al.  The Three-Point Correlation Function for Spin-2 Fields , 2002, astro-ph/0210261.

[55]  M. Zaldarriaga,et al.  Higher Order Moments of the Cosmic Shear and Other Spin-2 Fields , 2002, astro-ph/0208075.

[56]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[57]  M. Lombardi,et al.  The three-point correlation function of cosmic shear: I. The natural components , 2002, astro-ph/0207454.

[58]  Y. Mellier,et al.  Patterns in the weak shear 3-point correlation function , 2002, astro-ph/0201029.

[59]  Y. Mellier,et al.  B-modes in cosmic shear from source redshift clustering , 2001, astro-ph/0112441.

[60]  T. Theuns,et al.  Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.

[61]  Y. Mellier,et al.  Source-lens clustering effects on the skewness of the lensing convergence , 2000, astro-ph/0012200.

[62]  J. Einasto Large scale structure , 2000, astro-ph/0011332.

[63]  H. Couchman,et al.  A fitting formula for the non‐linear evolution of the bispectrum , 2000, astro-ph/0009427.

[64]  S. Colombi,et al.  Weak lensing predictions at intermediate scales , 2000, astro-ph/0009426.

[65]  L. Moscardini,et al.  Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.

[66]  P. Schneider,et al.  A NEW MEASURE FOR COSMIC SHEAR , 1997, astro-ph/9708143.

[67]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[68]  P. Schneider,et al.  Detection of (dark) matter concentrations via weak gravitational lensing , 1996, astro-ph/9601039.

[69]  N. Kaiser,et al.  Mapping the dark matter in clusters , 1994, astro-ph/9407004.

[70]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[71]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[72]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[73]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .