Band alignment and interlayer hybridisation in transition metal dichalcogenide/hexagonal boron nitride heterostructures

In van der Waals heterostructures, the relative alignment of bands between layers, and the resulting band hybridisation, are key factors in determining a range of electronic properties. This work examines these effects for heterostructures of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (hBN), an ubiquitous combination given the role of hBN as an encapsulating material. By comparing results of density functional calculations with experimental angle-resolved photoemission spectroscopy (ARPES) results, we explore the hybridisation between the valence states of the TMD and hBN layers, and show that it introduces avoided crossings between the TMD and hBN bands, with umklapp processes opening ‘ghost’ avoided crossings in individual bands. Comparison between density functional theory (DFT) and ARPES spectra for the MoSe2/hBN heterostructure shows that the valence bands of MoSe2 and hBN are significantly further separated in energy in experiment as compared to DFT. We then show that a novel scissor operator can be applied to the hBN valence states in the DFT calculations, to correct the band alignment and enable quantitative comparison to ARPES, explaining avoided crossings and other features of band visibility in the ARPES spectra.

[1]  T. Taniguchi,et al.  Enhanced Radiative Exciton Recombination in Monolayer WS2 on the hBN Substrate Competing with Nonradiative Exciton–Exciton Annihilation , 2022, ACS Photonics.

[2]  Kenji Watanabe,et al.  Improving the Optical Quality of MoSe2 and WS2 Monolayers with Complete h-BN Encapsulation by High-Temperature Annealing. , 2021, ACS applied materials & interfaces.

[3]  A. Bostwick,et al.  Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space , 2021, Science advances.

[4]  Kenji Watanabe,et al.  Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides , 2021, Nature Nanotechnology.

[5]  S. Haigh,et al.  Interfacial ferroelectricity in marginally twisted 2D semiconductors , 2021, Nature Nanotechnology.

[6]  V. Fal’ko,et al.  Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors , 2021, Scientific Reports.

[7]  K. Thygesen,et al.  Recent progress of the Computational 2D Materials Database (C2DB) , 2021, 2D Materials.

[8]  V. Fal’ko,et al.  Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers , 2021 .

[9]  A. Locatelli,et al.  Ghost anti-crossings caused by interlayer umklapp hybridization of bands in 2D heterostructures , 2020, 2D Materials.

[10]  Magdalena Birowska,et al.  Supercell-core software: A useful tool to generate an optimal supercell for vertically stacked nanomaterials , 2020, AIP Advances.

[11]  Alice E. A. Allen,et al.  The ONETEP linear-scaling density functional theory program. , 2020, The Journal of chemical physics.

[12]  G. Frenking basis set , 2020, Catalysis from A to Z.

[13]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol , 2019, Chemical science.

[14]  Xiaodong Xu,et al.  Visualizing electrostatic gating effects in two-dimensional heterostructures , 2019, Nature.

[15]  J. Robinson,et al.  Direct observation of minibands in a twisted graphene/WS2 bilayer , 2019, Science Advances.

[16]  T. Taniguchi,et al.  Band alignment determination of bulk h-BN and graphene/h-BN laminates using photoelectron emission microscopy , 2019, Journal of Applied Physics.

[17]  Q. Bao,et al.  Band Structure Engineering in 2D Materials for Optoelectronic Applications , 2018, Advanced Materials Technologies.

[18]  V. Fal’ko,et al.  Hybrid k·p tight-binding model for subbands and infrared intersubband optics in few-layer films of transition-metal dichalcogenides: MoS2 , MoSe2 , WS2 , and WSe2 , 2018, Physical Review B.

[19]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[20]  C. Robert,et al.  Spectrally narrow exciton luminescence from monolayer MoS2 and MoSe2 exfoliated onto epitaxially grown hexagonal BN , 2018, Applied Physics Letters.

[21]  L. Weston,et al.  Monolayer to Bulk Properties of Hexagonal Boron Nitride , 2018, The Journal of Physical Chemistry C.

[22]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[23]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[24]  K. Novoselov,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2016, Nature nanotechnology.

[25]  G. Flynn,et al.  Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. , 2016, Nano letters.

[26]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[27]  N. Hine,et al.  Energy landscape and band-structure tuning in realistic MoS2/MoSe2 heterostructures , 2015 .

[28]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[29]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[30]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[31]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[32]  A. Zunger,et al.  Extracting E versus k ⃗ effective band structure from supercell calculations on alloys and impurities , 2012 .

[33]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[34]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[35]  P. Haynes,et al.  Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory. , 2011, The Journal of chemical physics.

[36]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[37]  A. Bianco,et al.  Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra. , 2010, Journal of synchrotron radiation.

[38]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[39]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[40]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[41]  E. Gross,et al.  Exact coulomb cutoff technique for supercell calculations , 2006, cond-mat/0601031.

[42]  Arash A. Mostofi,et al.  Preconditioned iterative minimization for linear-scaling electronic structure calculations , 2003 .

[43]  Arash A. Mostofi,et al.  Nonorthogonal generalized Wannier function pseudopotential plane-wave method , 2002 .

[44]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[45]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[46]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[51]  Allan,et al.  Linear optical response in silicon and germanium including self-energy effects. , 1989, Physical review letters.

[52]  F. Jellinek,et al.  Crystal structures of tungsten disulfide and diselenide , 1987 .

[53]  F. Jellinek,et al.  On the structure of molybdenum diselenide and disulfide , 1986 .

[54]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[55]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[56]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[57]  D. Bowler,et al.  FAST TRACK COMMUNICATION: Chemical accuracy for the van der Waals density functional , 2010 .

[58]  C. Bolliger,et al.  Linear Scaling Electronic Structure Methods , 2008 .

[59]  Jones,et al.  High electron mobility , 2007 .

[60]  Harry G. Drickamer,et al.  Effect of High Pressure on the Lattice Parameters of Diamond, Graphite, and Hexagonal Boron Nitride , 1966 .