Polynomial Surrogates for Open-Channel Flows in Random Steady State
暂无分享,去创建一个
Didier Lucor | Mélanie C. Rochoux | Cédric Goeury | Olivier Thual | Nicole Goutal | Sophie Ricci | Sébastien Boyaval | Nabil El Moçayd | S. Ricci | D. Lucor | N. Goutal | C. Goeury | S. Boyaval | M. Rochoux | O. Thual | Nabil El Moçayd | N. El Moçayd
[1] Fabio Nobile,et al. Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..
[2] Marcelo H. Kobayashi,et al. Stochastic Solution for Uncertainty Propagation in Nonlinear Shallow-Water Equations , 2008 .
[3] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[4] GAËL POËTTE,et al. Iterative Polynomial Approximation Adapting to Arbitrary Probability Distribution , 2015, SIAM J. Numer. Anal..
[5] Mélanie Catherine Rochoux. Vers une meilleure prévision de la propagation d'incendies de forêt : évaluation de modèles et assimilation de données , 2014 .
[6] Dongbin Xiu,et al. On numerical properties of the ensemble Kalman filter for data assimilation , 2008 .
[7] N. Wiener. The Homogeneous Chaos , 1938 .
[8] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[9] P. Bates,et al. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. , 2010 .
[10] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[11] Derek M. Causon,et al. Numerical prediction of dam-break flows in general geometries with complex bed topography , 2004 .
[12] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[13] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[14] A. Belme,et al. ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION , 2016 .
[15] Silvia Bozzi,et al. Roughness and Discharge Uncertainty in 1D Water Level Calculations , 2015, Environmental Modeling & Assessment.
[16] Shuhuang Xiang,et al. Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature , 2012 .
[17] M. Berveiller,et al. Eléments finis stochastiques : approches intrusive et non intrusive pour des analyses de fiabilité , 2005 .
[18] R. Grandhi,et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .
[19] G. Blatman,et al. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .
[20] Bruno Sudret,et al. Sparse polynomial chaos expansions based on an adaptive Least Angle Regression algorithm , 2009 .
[21] Khachik Sargsyan,et al. Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..
[22] Didier Lucor,et al. Interactive comment on “Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation” , 2014 .
[23] Xiu Yang,et al. Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..
[24] Hester Bijl,et al. Uncertainty Quantification in Computational Fluid Dynamics , 2013, Lecture Notes in Computational Science and Engineering.
[25] P. Bates,et al. Evaluation of 1D and 2D numerical models for predicting river flood inundation , 2002 .
[26] V. T. Chow. Open-channel hydraulics , 1959 .
[27] A. Resmini,et al. Sparse grids‐based stochastic approximations with applications to aerodynamics sensitivity analysis , 2016 .
[28] Rene A. Camacho,et al. A Comparison of Bayesian Methods for Uncertainty Analysis in Hydraulic and Hydrodynamic Modeling , 2015 .
[29] Michel Salaün,et al. Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion , 2014, Reliab. Eng. Syst. Saf..
[30] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[31] Song Zhang,et al. Uncertainty analysis of estuarine hydrodynamic models: an evaluation of input data uncertainty in the weeks bay estuary, alabama , 2014 .
[32] Fabio Nobile,et al. Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points , 2015, J. Multivar. Anal..
[33] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[34] Azzeddine Soulaïmani,et al. A POD-based reduced-order model for free surface shallow water flows over real bathymetries for Monte-Carlo-type applications , 2012 .
[35] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[36] D. Xiu,et al. STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .
[37] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[38] Grant,et al. BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES , 2009 .
[39] Menner A. Tatang,et al. An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .
[40] Amélie Besnard,et al. Comparaison de modèles 1D à casiers et 2D pour la modélisation hydraulique d’une plaine d’inondation – Cas de la Garonne entre Tonneins et La Réole , 2011 .
[41] Mélanie C. Rochoux,et al. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting , 2016 .
[42] Soroosh Sorooshian,et al. Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .
[43] Justin Winokur,et al. Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification , 2015 .
[44] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[45] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[46] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[47] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[48] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[49] N. Gouta,et al. A finite volume solver for 1D shallow‐water equations applied to an actual river , 2002 .
[50] Bruno Sudret,et al. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model , 2015, Reliab. Eng. Syst. Saf..
[51] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..