Chemical tools for functional studies of glycans.

In recent years a variety of chemical approaches have been developed for elucidating the molecular basis of biological processes in which glycans participate. The chemical technologies uncovered have greatly influenced the progress of glycomics research programs. This tutorial review highlights recent advances in chemical tools which have been developed and their applications in studies aimed at gaining a better understanding of the roles that glycans play in biological processes.

[1]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[2]  Injae Shin,et al.  Carbohydrate microarrays for assaying galactosyltransferase activity. , 2007, Organic letters.

[3]  Charles Danzin,et al.  Ortho- and para-(difluoromethyl)aryl-β-D-glucosides : a new class of enzyme-activated irreversible inhibitors of β-glucosidases , 1990 .

[4]  Carolyn R. Bertozzi,et al.  Fmoc-Based Synthesis of Peptide-αThioesters: Application to the Total Chemical Synthesis of a Glycoprotein by Native Chemical Ligation , 1999 .

[5]  B. Xia,et al.  Versatile fluorescent derivatization of glycans for glycomic analysis , 2005, Nature Methods.

[6]  Nir Dotan,et al.  Intact cell adhesion to glycan microarrays. , 2003, Glycobiology.

[7]  Milan Mrksich,et al.  Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. , 2002, Chemistry & biology.

[8]  J. Marth,et al.  A genetic approach to Mammalian glycan function. , 2003, Annual review of biochemistry.

[9]  Antony J Fairbanks,et al.  Endohexosaminidase M: Exploring and Exploiting Enzyme Substrate Specificity , 2006, Chembiochem : a European journal of chemical biology.

[10]  Peter H. Seeberger,et al.  Automated Solid-Phase Synthesis of Oligosaccharides , 2001, Science.

[11]  J. M. de la Fuente,et al.  Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. , 2006, Biochimica et biophysica acta.

[12]  S. Nishimura,et al.  Mechanism-based fluorescent labeling of beta-galactosidases. An efficient method in proteomics for glycoside hydrolases. , 2004, The Journal of biological chemistry.

[13]  Ten Feizi,et al.  Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions , 2002, Nature Biotechnology.

[14]  Chong Yu,et al.  A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Injae Shin,et al.  Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. , 2002, Angewandte Chemie.

[16]  Carolyn R Bertozzi,et al.  A chemical approach for identifying O-GlcNAc-modified proteins in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Kwang-Seuk Ko,et al.  Fluorous-based carbohydrate microarrays. , 2005, Journal of the American Chemical Society.

[18]  M Ichikawa,et al.  A mechanism-based affinity-labeling agent for possible use in isolating N-acetylglucosaminidase. , 2001, Bioorganic & medicinal chemistry letters.

[19]  Myung-Ryul Lee,et al.  Chemoselective ligation of maleimidosugars to peptides/protein for the preparation of neoglycopeptides/neoglycoprotein , 2001 .

[20]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[21]  Carolyn R Bertozzi,et al.  A strategy for functional proteomic analysis of glycosidase activity from cell lysates. , 2004, Angewandte Chemie.

[22]  Carolyn R. Bertozzi,et al.  Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents , 1999 .

[23]  Ola Blixt,et al.  Glycan microarrays for screening sialyltransferase specificities , 2007, Glycoconjugate Journal.

[24]  B. Cravatt,et al.  Mechanism-based profiling of enzyme families. , 2006, Chemical reviews.

[25]  Peter H Seeberger,et al.  Profiling heparin-chemokine interactions using synthetic tools. , 2007, ACS chemical biology.

[26]  Yuh-Yih Chien,et al.  Carbohydrate‐Encapsulated Gold Nanoparticles for Rapid Target‐Protein Identification and Binding‐Epitope Mapping , 2005, Chembiochem : a European journal of chemical biology.

[27]  Ajit Varki,et al.  Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins , 2007, Nature.

[28]  J. Ridet,et al.  Glycoprofiling with micro-arrays of glycoconjugates and lectins. , 2004, Glycobiology.

[29]  Injae Shin,et al.  Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. , 2004, Journal of the American Chemical Society.

[30]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[33]  Benjamin G Davis,et al.  Synthesis of glycoproteins. , 2002, Chemical reviews.

[34]  Nagarajan Vaidehi,et al.  Sulfation patterns of glycosaminoglycans encode molecular recognition and activity , 2006, Nature chemical biology.

[35]  Bing Li,et al.  A highly efficient chemoenzymatic approach toward glycoprotein synthesis. , 2006, Organic letters.

[36]  L. Lo,et al.  Design and synthesis of activity probes for glycosidases. , 2002, Organic letters.

[37]  T. Roach,et al.  High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. , 2007, Glycobiology.

[38]  Ola Blixt,et al.  Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. , 2006, Glycobiology.

[39]  Daniel C. Anthony,et al.  Expanding the diversity of chemical protein modification allows post-translational mimicry , 2007, Nature.

[40]  Peter G. Schultz,et al.  A New Strategy for the Synthesis of Glycoproteins , 2004, Science.

[41]  Linda C Hsieh-Wilson,et al.  A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. , 2003, Journal of the American Chemical Society.

[42]  James C Paulson,et al.  Sweet spots in functional glycomics , 2006, Nature chemical biology.

[43]  Myung-Ryul Lee,et al.  Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. , 2005, Organic letters.

[44]  Derek Macmillan,et al.  Modular assembly of glycoproteins: towards the synthesis of GlyCAM-1 by using expressed protein ligation. , 2004, Angewandte Chemie.

[45]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[46]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[47]  Scott B Ficarro,et al.  Parallel identification of O-GlcNAc-modified proteins from cell lysates. , 2004, Journal of the American Chemical Society.

[48]  Shih-Hsiung Wu,et al.  Design of a mechanism-based probe for neuraminidase to capture influenza viruses. , 2005, Angewandte Chemie.

[49]  Darren Williams,et al.  Efficient solid-phase synthesis of trifunctional probes and their application to the detection of carbohydrate-binding proteins. , 2005, Organic letters.

[50]  Jennifer A. Prescher,et al.  Probing mucin-type O-linked glycosylation in living animals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Unverzagt,et al.  An orthogonal double-linker resin facilitates the efficient solid-phase synthesis of complex-type N-glycopeptide thioesters suitable for native chemical ligation. , 2005, Angewandte Chemie.

[52]  Peter G Schultz,et al.  A method for the generation of glycoprotein mimetics. , 2003, Journal of the American Chemical Society.

[53]  Shaoyi Liu,et al.  Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells , 2002, Nature Biotechnology.

[54]  Injae Shin,et al.  Carbohydrate Microarray Technology for Functional Glycomics , 2007 .

[55]  Spencer J. Williams,et al.  Active-site Peptide “Fingerprinting” of Glycosidases in Complex Mixtures by Mass Spectrometry , 2005, Journal of Biological Chemistry.

[56]  Carolyn R. Bertozzi,et al.  Chemical Technologies for Probing Glycans , 2006, Cell.

[57]  Scott B Ficarro,et al.  Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. , 2007, Nature chemical biology.

[58]  Lluis Ballell,et al.  A New Chemical Probe for Proteomics of Carbohydrate‐Binding Proteins , 2005, Chembiochem : a European journal of chemical biology.

[59]  Animesh Nandi,et al.  Global identification of O-GlcNAc-modified proteins. , 2006, Analytical chemistry.

[60]  Chi-Huey Wong,et al.  Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides. , 2007, Angewandte Chemie.