Adenine nucleotides and the xanthophyll cycle in leaves

[1]  A. Gilmore,et al.  Adenine nucleotides and the xanthophyll cycle in leaves , 1994, Planta.

[2]  A. S. Raghavendra,et al.  Light-induced pH changes in leaves of C4 plants , 1993, Planta.

[3]  G. Öquist,et al.  Photosystem II reaction centres stay intact during low temperature photoinhibition , 1993, Photosynthesis Research.

[4]  E. Pfundel,et al.  The pH Dependence of Violaxanthin Deepoxidation in Isolated Pea Chloroplasts , 1993, Plant physiology.

[5]  U. Heber,et al.  Concerning a dual function of coupled cyclic electron transport in leaves. , 1992, Plant physiology.

[6]  C. Neubauer,et al.  Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. , 1992, Plant physiology.

[7]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[8]  O. Björkman,et al.  Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy , 1992, Planta.

[9]  N. Yabuki,et al.  AMP deaminase and the control of adenylate catabolism in suspension-cultured Catharanthus roseus cells , 1992 .

[10]  O. Björkman,et al.  Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation , 1992, Photosynthesis Research.

[11]  A. Gilmore,et al.  Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. S. Gebhardt,et al.  Flowering response of day-neutral and short-day cultivars of Nicotiana tabacum L. interactions among roots, genotype, leaf ontogenic position and growth conditions , 1991, Planta.

[13]  U. Schreiber,et al.  Contrasting pH-Optima of Light-Driven O2-and H2O2-Reduction in Spinach Chloroplasts as Measured via Chlorophyll Fluorescence Quenching , 1991 .

[14]  W. Bilger,et al.  Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. , 1991, Planta.

[15]  K. Siebke,et al.  Control of photosynthesis in leaves as revealed by rapid gas exchange and measurements of the assimilatory force FA , 1990, Planta.

[16]  Christopher B. Field,et al.  Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies , 1990, Oecologia.

[17]  U. Schreiber,et al.  O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence , 1990, Photosynthesis Research.

[18]  Wolfgang Bilger,et al.  Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis , 1990, Photosynthesis Research.

[19]  J. Snel,et al.  The use of chlorophyll fluorescence nomenclature in plant stress physiology , 1990, Photosynthesis Research.

[20]  O. Björkman,et al.  Leaf Xanthophyll content and composition in sun and shade determined by HPLC , 1990, Photosynthesis Research.

[21]  W. W. Adams,et al.  Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. , 1990, Plant physiology.

[22]  K. Winter,et al.  Dithiothreitol, an inhibitor of violaxanthin de-epoxidation, increases the susceptibility of leaves ofNerium oleander L. to photoinhibition of photosynthesis , 1989, Planta.

[23]  W. Bilger,et al.  Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. , 1989, Plant physiology.

[24]  K. Winter,et al.  Zeaxanthin and the Induction and Relaxation Kinetics of the Dissipation of Excess Excitation Energy in Leaves in 2% O(2), 0% CO(2). , 1989, Plant physiology.

[25]  K. Winter,et al.  Zeaxanthin Synthesis, Energy Dissipation, and Photoprotection of Photosystem II at Chilling Temperatures. , 1989, Plant physiology.

[26]  O. Björkman,et al.  Relationship between efficiency of photosynthetic energy conversion and chlorophyll fluorescence quenching in upland cotton (Gossypium hirsutum L.) , 1989, Planta.

[27]  W. Bilger,et al.  Kinetic Relationship between Energy-Dependent Fluorescence Quenching, Light Scattering, Chlorophyll Luminescence and Proton Pumping in Intact Leaves , 1988 .

[28]  P. Horton,et al.  A study of the regulation and function of energy-dependent quenching in pea chloroplasts , 1988 .

[29]  K. Winter,et al.  Zeaxanthin and the Heat Dissipation of Excess Light Energy in Nerium oleander Exposed to a Combination of High Light and Water Stress. , 1988, Plant physiology.

[30]  O. Björkman,et al.  Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants , 1987, Planta.

[31]  O. Björkman,et al.  Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins , 1987, Planta.

[32]  K. Dietz,et al.  Rate-limiting factors in leaf photosynthesis. I. Carbon fluxes in the calvin cycle , 1984 .

[33]  U. Heber,et al.  Light scattering, chlorophyll fluorescence and state of the adenylate system in illuminated spinach leaves , 1982 .

[34]  A. Hager The Reversible, Light-Induced Conversions of Xanthophylls in the Chloroplast , 1981, Pigments in Plants.

[35]  U. Schreiber Light‐activated ATPase and ATP‐driven reverse electron transport in intact chloroplasts , 1980 .

[36]  U. Schreiber,et al.  Properties of ATP-driven reverse electron flow in chloroplasts. , 1979, Biochimica et biophysica acta.

[37]  Harry Y. Yamamoto,et al.  Biochemistry of the violaxanthin cycle in higher plants , 1979 .

[38]  M. Avron,et al.  Proton gradients as possible intermediary energy transducers during ATP‐driven reverse electron flow in chloroplasts , 1977, FEBS letters.

[39]  A. Sellami Evolution des adenosine phosphates et de la charge energetique dans les compartiments chloroplastique et nonchloroplastique des feuilles de ble , 1976 .

[40]  U. Heber Metabolite Exchange Between Chloroplasts and Cytoplasm , 1974 .

[41]  D. E. Atkinson,et al.  Stabilization of adenylate energy charge by the adenylate deaminase reaction. , 1973, The Journal of biological chemistry.

[42]  U. Heber Stoichiometry of reduction and phosphorylation during illumination of intact chloroplasts. , 1973, Biochimica et biophysica acta.

[43]  U. Heber,et al.  Direct and Indirect Transfer of ATP and ADP across the Chloroplast Envelope , 1970, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.

[44]  A. Hager Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-→ Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung , 1969, Planta.

[45]  U. Heber,et al.  Conformational changes of chloroplasts induced by illumination of leaves in vivo. , 1969, Biochimica et biophysica acta.

[46]  A. Pradet,et al.  Study of adenosine 5'-mono-,di- and triphosphates in plant tissues. IV. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. , 1968, Biochimica et biophysica acta.

[47]  R. Andersen,et al.  Optimum conditions for bonding of plant phenols to insoluble polyvinylpyrrolidone , 1968 .

[48]  A. Hager Untersuchungen üben die Rückreaktionen im Xanthophyll-Cyclus bei Chlorella, Spinacia und Taxus , 1967, Planta.

[49]  U. Heber,et al.  Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. , 1965, Biochimica et biophysica acta.

[50]  C. Chichester,et al.  Studies on the light and dark interconversions of leaf xanthophylls. , 1962, Archives of biochemistry and biophysics.

[51]  A. Gilmore,et al.  Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching , 2004, Photosynthesis Research.

[52]  G. Öquist,et al.  Cold-hardening-induced resistance to photoinhibition of photosynthesis in winter rye is dependent upon an increased capacity for photosynthesis , 2004, Planta.

[53]  B. Demmig‐Adams,et al.  Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants , 1994 .

[54]  B. Demmig‐Adams,et al.  Photoprotection and Other Responses of Plants to High Light Stress , 1992 .

[55]  C. Foyer,et al.  RESPONSES OF PHOTOSYNTHESIS AND THE XANTHOPHYLL AND ASCORBATE-GLUTATHIONE CYCLES TO CHANGES IN IRRADIANCE, PHOTOINHIBITION AND RECOVERY , 1989 .

[56]  T. Andrews,et al.  Mangrove Photosynthesis: Response to High-Irradiance Stress , 1988 .

[57]  Stephen B. Powles,et al.  Photoinhibition of Photosynthesis Induced by Visible Light , 1984 .