Manifold Learning in Regression Tasks

The paper presents a new geometrically motivated method for non-linear regression based on Manifold learning technique. The regression problem is to construct a predictive function which estimates an unknown smooth mapping f from q-dimensional inputs to m-dimensional outputs based on a training data set consisting of given ‘input-output’ pairs. The unknown mapping f determines q-dimensional manifold M(f) consisting of all the ‘input-output’ vectors which is embedded in (q+m)-dimensional space and covered by a single chart; the training data set determines a sample from this manifold. Modern Manifold Learning methods allow constructing the certain estimator M* from the manifold-valued sample which accurately approximates the manifold. The proposed method called Manifold Learning Regression (MLR) finds the predictive function fMLR to ensure an equality M(fMLR) = M*. The MLR simultaneously estimates the m×q Jacobian matrix of the mapping f.

[1]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[2]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[3]  Alexander P. Kuleshov,et al.  Manifold Learning: Generalization Ability and Tangent Proximity , 2013, Int. J. Softw. Informatics.

[4]  Pascal Frossard,et al.  Tangent space estimation for smooth embeddings of Riemannian manifolds , 2012 .

[5]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[6]  Alexander P. Kuleshov,et al.  Manifold Learning: Generalization Ability and Tangent Proximity , 2013, Int. J. Softw. Informatics.

[7]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[8]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[9]  Evgeny Burnaev,et al.  Gaussian Process Regression for Structured Data Sets , 2015, SLDS.

[10]  Yunqian Ma,et al.  Manifold Learning Theory and Applications , 2011 .

[11]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[12]  Daniel D. Lee,et al.  Grassmann discriminant analysis: a unifying view on subspace-based learning , 2008, ICML '08.

[13]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[14]  Yoshua Bengio,et al.  Non-Local Manifold Tangent Learning , 2004, NIPS.

[15]  Michael Biehl,et al.  Dimensionality reduction mappings , 2011, 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM).

[16]  Alexander P. Kuleshov,et al.  Tangent Bundle Manifold Learning via Grassmann&Stiefel Eigenmaps , 2012, ArXiv.

[17]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[18]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[19]  Alexander Kuleshov,et al.  Cognitive technologies in adaptive models of complex plants , 2009 .

[20]  X. Huo,et al.  A Survey of Manifold-Based Learning Methods , 2007 .

[21]  Alexander P. Kuleshov,et al.  Manifold Learning in Data Mining Tasks , 2014, MLDM.

[22]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[23]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[24]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[25]  Serge J. Belongie,et al.  Learning to Traverse Image Manifolds , 2006, NIPS.

[26]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[27]  Michel Verleysen,et al.  Quality assessment of dimensionality reduction: Rank-based criteria , 2009, Neurocomputing.

[28]  Wei Chen,et al.  A non‐stationary covariance‐based Kriging method for metamodelling in engineering design , 2007 .

[29]  Evgeny Burnaev,et al.  Adaptive Design of Experiments Based on Gaussian Processes , 2015, SLDS.

[30]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[31]  Ying Xiong,et al.  A nonstationary covariance based Kriging method for metamodeling in engineering design , 2006 .

[32]  Lawrence Cayton,et al.  Algorithms for manifold learning , 2005 .

[33]  Larry A. Wasserman,et al.  Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..

[34]  M. Wand Local Regression and Likelihood , 2001 .

[35]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .