Anderson localisation and optical-event horizons in rogue-soliton generation.

We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

[1]  Rosenbluth Comment on "Classical and quantum superdiffusion in a time-dependent random potential" , 1992, Physical review letters.

[2]  A Demircan,et al.  Controlling light by light with an optical event horizon. , 2011, Physical review letters.

[3]  Günter Steinmeyer,et al.  Supercontinuum generation by multiple scatterings at a group velocity horizon. , 2014, Optics express.

[4]  M. Segev,et al.  Disorder-Enhanced Transport in Photonic Quasicrystals , 2011, Science.

[5]  C. Conti Solitonization of the Anderson localization , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[6]  Salman Karbasi,et al.  Observation of migrating transverse Anderson localizations of light in nonlocal media. , 2014, Physical review letters.

[7]  Arno Schouwenburg,et al.  European Journal of Mechanics B/Fluids and ScienceDirect , 2003 .

[8]  Soliton-radiation trapping in gas-filled photonic crystal fibers , 2013, 1301.5998.

[9]  Salman Karbasi,et al.  Experimental observation of disorder induced self-focusing in optical fibers , 2014 .

[10]  S. Amiranashvili,et al.  Adiabatic theory of solitons fed by dispersive waves , 2016 .

[11]  Manuel A. Andrade,et al.  Physical mechanisms of the Rogue Wave phenomenon , 2022 .

[12]  B. Eggleton,et al.  Harnessing and control of optical rogue waves in supercontinuum generation. , 2008, Optics express.

[13]  Philip W. Anderson,et al.  New method for a scaling theory of localization , 1980 .

[14]  M. Segev,et al.  Anderson localization of light , 2009, Nature Photonics.

[15]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[16]  Uwe Bandelow,et al.  Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation , 2006 .

[17]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[18]  H. Giessen,et al.  Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime. , 2007, Optics express.

[19]  Efficient all-optical control of solitons , 2016 .

[20]  U. Leonhardt,et al.  Fiber-Optical Analog of the Event Horizon , 2007, Science.

[21]  A. Pikovsky,et al.  Destruction of Anderson localization by a weak nonlinearity. , 2007, Physical review letters.

[22]  Claudio Conti,et al.  Rogue solitons in optical fibers: a dynamical process in a complex energy landscape? , 2015 .

[23]  B Mehlig,et al.  Staggered ladder spectra. , 2006, Physical review letters.

[24]  Alfred R. Osborne,et al.  Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .

[25]  Feng,et al.  Classical and quantum superdiffusion in a time-dependent random potential. , 1991, Physical review letters.

[26]  Electronics Letters , 1965, Nature.

[27]  B. Jalali,et al.  Rogue events and noise shaping in nonlinear silicon photonics , 2013 .

[28]  Salman Karbasi,et al.  Light focusing in the Anderson regime , 2014, Nature Communications.

[29]  S. Fishman,et al.  The nonlinear Schrödinger equation with a random potential: results and puzzles , 2011, 1108.2956.

[30]  E. Dianov,et al.  Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers , 1985 .

[31]  R. Leonhardt,et al.  White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. , 2001, Optics letters.

[32]  Observation of a localization transition in quasiperiodic photonic lattices. , 2008, Physical review letters.

[33]  M. Segev,et al.  Transport and Anderson localization in disordered two-dimensional photonic lattices , 2007, Nature.

[34]  Zach DeVito,et al.  Opt , 2017 .

[35]  Roberto Morandotti,et al.  Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. , 2007, Physical review letters.

[36]  Frédérique Vanholsbeeck,et al.  The role of pump incoherence in continuous-wave supercontinuum generation. , 2005, Optics express.

[37]  Günter Steinmeyer,et al.  Compressible octave spanning supercontinuum generation by two-pulse collisions. , 2013, Physical review letters.

[38]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[39]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[40]  O. Bang,et al.  Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. , 2006, Optics express.

[41]  Andrea Fratalocchi,et al.  Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals , 2008 .

[42]  Physics Letters , 1962, Nature.

[43]  IEEE Journal of Quantum Electronics , 2022 .

[44]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[45]  Jens Limpert,et al.  High average power supercontinuum generation in photonic crystal fibers , 2003 .

[46]  D. O. Krimer,et al.  Universal spreading of wave packets in disordered nonlinear systems. , 2008, Physical review letters.

[47]  J R Taylor,et al.  Continuous-wave, high-power, Raman continuum generation in holey fibers. , 2003, Optics letters.

[48]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[49]  M. Limonov,et al.  Optical Properties of Photonic Structures: Interplay of Order and Disorder , 2012 .

[50]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[51]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[52]  N Akhmediev,et al.  Integrable Turbulence and Rogue Waves: Breathers or Solitons? , 2016, Physical review letters.

[53]  Arnaud Mussot,et al.  Optical event horizons from the collision of a soliton and its own dispersive wave , 2015 .

[54]  L. Provino,et al.  Compact broadband continuum source based on microchip laser pumped microstructured fibre , 2001 .

[55]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[56]  G. Kopidakis,et al.  Discrete breathers and delocalization in nonlinear disordered systems , 2000, Physical review letters.

[57]  A. Lagendijk,et al.  Transverse localization of light. , 1989, Physical review letters.

[58]  S. Kobtsev,et al.  Coherent properties of super-continuum containing clearly defined solitons. , 2006, Optics express.

[59]  Shmuel Fishman,et al.  Hyper-transport of light and stochastic acceleration by evolving disorder , 2012, Nature Physics.

[60]  R. Windeler,et al.  Noise amplification during supercontinuum generation in microstructure fiber. , 2003, Optics letters.

[61]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[62]  D V Skryabin,et al.  Soliton interaction mediated by cascaded four wave mixing with dispersive waves. , 2013, Optics express.

[63]  O. Bang,et al.  Collisions and turbulence in optical rogue wave formation , 2010 .

[64]  Rodislav Driben,et al.  Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers. , 2012, Optics letters.

[65]  Günter Steinmeyer,et al.  Rogue events in the group velocity horizon , 2012, Scientific Reports.

[66]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[67]  A Tünnermann,et al.  Wave localization at the boundary of disordered photonic lattices. , 2010, Optics letters.