The millimeter-wave spectrum of AlNC: chemical trends in metal isocyanide molecules

[1]  J. Robinson,et al.  The Millimeter and Submillimeter Spectrum of AlCH3 (X̃1A1) , 1996 .

[2]  S. Petrie Structural Trends in the Monocyanides of the Second-Row Metal Ions Na+, Mgm+ (m = 1, 2), and Aln+ (n = 1−3) , 1996 .

[3]  K. Kawaguchi,et al.  Rotational spectra in the ν2 vibrationally excited states of MgNC , 1996 .

[4]  H. Schaefer,et al.  Spectroscopic constants and potential energy surfaces for the possible interstellar molecules A1NC and A1CN , 1995 .

[5]  D. O. Harris,et al.  NEW ROVIBRATIONAL DATA FOR MgOH AND MgOD, AND THE INTERNUCLEAR POTENTIAL FUNCTION OF THE GROUND ELECTRONIC STATE , 1995 .

[6]  J. Cernicharo,et al.  Detection of MgCN in IRC +10216: A New Metal-bearing Free Radical , 1995 .

[7]  M. Anderson,et al.  Millimeter-wave spectroscopy of vibrationally excited ground state alkaline-earth hydroxide radicals (X 2Σ+) , 1995 .

[8]  M. Anderson,et al.  The millimeter-wave spectrum of25MgNC and 26MgNC: bonding in magnesium isocyanides , 1994 .

[9]  M. Anderson,et al.  The millimeter and submillimeter rotational spectrum of the MgCN radical (X [SUP]2[/SUP] Sigma(+)) , 1994 .

[10]  M. Anderson,et al.  A millimeter/submillimeter spectrometer for !high resolution studies of transient molecules , 1994 .

[11]  T. Steimle,et al.  Detection of Sodium Cyanide (NaCN) in IRC 10216 , 1994 .

[12]  Paul von Ragué Schleyer,et al.  The structures of LiNC, NaNC, and KNC: Potential energy surface for the orbiting motion of the metal cation around the CN group , 1994, J. Comput. Chem..

[13]  T. Steimle,et al.  Laboratory measurements of the millimeter-wave spectra of calcium isocyanide , 1993 .

[14]  U. Nagashima,et al.  An AB initio prediction of the spectroscopic constants of MgNC : the first Mg-bearing molecule in space , 1993 .

[15]  J. Weisshaar Bare transition metal atoms in the gas phase: reactions of M, M+, and M2+ with hydrocarbons , 1993 .

[16]  K. Kawaguchi,et al.  Laboratory Spectroscopy of MgNC: The First Radioastronomical Identification of Mg-bearing Molecule , 1993 .

[17]  P. Bernath,et al.  Laser spectroscopy of CaNC and SrNC , 1990 .

[18]  Kenneth B. Wiberg,et al.  Substituent effects. 1. Methyl derivatives , 1990 .

[19]  J. Visticot,et al.  Observation and spectroscopy of metallic free radicals produced by reactive collisions during a supersonic expansion , 1990 .

[20]  A. J. Downs,et al.  Characterisation of monomeric methylsodium and methylpotassium: infrared spectra of the matrix-isolated molecules , 1990 .

[21]  C. Jungen,et al.  Fast ion beam laser spectroscopy of N2O+ : Effects of orbital angular momentum and vibrational anharmonicity , 1989 .

[22]  Paul von Ragué Schleyer,et al.  Sodium, Potassium, Rubidium, and Cesium: X-Ray Structurai Analysis of Their Organic Compounds1 , 1987 .

[23]  Koichi M. T. Yamada,et al.  Effective Hamiltonian for polyatomic linear molecules , 1985 .

[24]  Charles W. Bauschlicher,et al.  AB initio study of BeCN, MgCN, CaCN and BaCN , 1985 .

[25]  W. Meerts,et al.  Molecular Beam Electric Resonance Study of KCN, K13CN and KC15N , 1984 .

[26]  W. Meerts,et al.  High-resolution molecular-beam spectroscopy of NaCN and Na13CN , 1984 .

[27]  W. Meerts,et al.  Rotational spectrum, hyperfine spectrum and structure of lithium isocyanide , 1983 .

[28]  D. Bounds,et al.  An ab initio molecular orbital study of NaCN and KCN , 1981 .

[29]  W. Meerts,et al.  Rotational spectrum and structure of KCN , 1980 .

[30]  A. Streitwieser,et al.  Ab initio SCF-MO calculations of methyllithium and related systems. Absence of covalent character in the carbon-lithium bonds , 1976 .

[31]  D. Lide,et al.  Structure of the Alkali Hydroxides. IV. Interpretation of Vibration–Rotation Interactions in CsOH and RbOH and Refinement of Structures , 1969 .