The millimeter-wave spectrum of AlNC: chemical trends in metal isocyanide molecules
暂无分享,去创建一个
[1] J. Robinson,et al. The Millimeter and Submillimeter Spectrum of AlCH3 (X̃1A1) , 1996 .
[2] S. Petrie. Structural Trends in the Monocyanides of the Second-Row Metal Ions Na+, Mgm+ (m = 1, 2), and Aln+ (n = 1−3) , 1996 .
[3] K. Kawaguchi,et al. Rotational spectra in the ν2 vibrationally excited states of MgNC , 1996 .
[4] H. Schaefer,et al. Spectroscopic constants and potential energy surfaces for the possible interstellar molecules A1NC and A1CN , 1995 .
[5] D. O. Harris,et al. NEW ROVIBRATIONAL DATA FOR MgOH AND MgOD, AND THE INTERNUCLEAR POTENTIAL FUNCTION OF THE GROUND ELECTRONIC STATE , 1995 .
[6] J. Cernicharo,et al. Detection of MgCN in IRC +10216: A New Metal-bearing Free Radical , 1995 .
[7] M. Anderson,et al. Millimeter-wave spectroscopy of vibrationally excited ground state alkaline-earth hydroxide radicals (X 2Σ+) , 1995 .
[8] M. Anderson,et al. The millimeter-wave spectrum of25MgNC and 26MgNC: bonding in magnesium isocyanides , 1994 .
[9] M. Anderson,et al. The millimeter and submillimeter rotational spectrum of the MgCN radical (X [SUP]2[/SUP] Sigma(+)) , 1994 .
[10] M. Anderson,et al. A millimeter/submillimeter spectrometer for !high resolution studies of transient molecules , 1994 .
[11] T. Steimle,et al. Detection of Sodium Cyanide (NaCN) in IRC 10216 , 1994 .
[12] Paul von Ragué Schleyer,et al. The structures of LiNC, NaNC, and KNC: Potential energy surface for the orbiting motion of the metal cation around the CN group , 1994, J. Comput. Chem..
[13] T. Steimle,et al. Laboratory measurements of the millimeter-wave spectra of calcium isocyanide , 1993 .
[14] U. Nagashima,et al. An AB initio prediction of the spectroscopic constants of MgNC : the first Mg-bearing molecule in space , 1993 .
[15] J. Weisshaar. Bare transition metal atoms in the gas phase: reactions of M, M+, and M2+ with hydrocarbons , 1993 .
[16] K. Kawaguchi,et al. Laboratory Spectroscopy of MgNC: The First Radioastronomical Identification of Mg-bearing Molecule , 1993 .
[17] P. Bernath,et al. Laser spectroscopy of CaNC and SrNC , 1990 .
[18] Kenneth B. Wiberg,et al. Substituent effects. 1. Methyl derivatives , 1990 .
[19] J. Visticot,et al. Observation and spectroscopy of metallic free radicals produced by reactive collisions during a supersonic expansion , 1990 .
[20] A. J. Downs,et al. Characterisation of monomeric methylsodium and methylpotassium: infrared spectra of the matrix-isolated molecules , 1990 .
[21] C. Jungen,et al. Fast ion beam laser spectroscopy of N2O+ : Effects of orbital angular momentum and vibrational anharmonicity , 1989 .
[22] Paul von Ragué Schleyer,et al. Sodium, Potassium, Rubidium, and Cesium: X-Ray Structurai Analysis of Their Organic Compounds1 , 1987 .
[23] Koichi M. T. Yamada,et al. Effective Hamiltonian for polyatomic linear molecules , 1985 .
[24] Charles W. Bauschlicher,et al. AB initio study of BeCN, MgCN, CaCN and BaCN , 1985 .
[25] W. Meerts,et al. Molecular Beam Electric Resonance Study of KCN, K13CN and KC15N , 1984 .
[26] W. Meerts,et al. High-resolution molecular-beam spectroscopy of NaCN and Na13CN , 1984 .
[27] W. Meerts,et al. Rotational spectrum, hyperfine spectrum and structure of lithium isocyanide , 1983 .
[28] D. Bounds,et al. An ab initio molecular orbital study of NaCN and KCN , 1981 .
[29] W. Meerts,et al. Rotational spectrum and structure of KCN , 1980 .
[30] A. Streitwieser,et al. Ab initio SCF-MO calculations of methyllithium and related systems. Absence of covalent character in the carbon-lithium bonds , 1976 .
[31] D. Lide,et al. Structure of the Alkali Hydroxides. IV. Interpretation of Vibration–Rotation Interactions in CsOH and RbOH and Refinement of Structures , 1969 .