Checking Simple Properties of Transition Systems Defined by Thue Specifications

In (possibly infinite) deterministic labeled transition systems defined by Thue congruences, labels are considered as functions of states into states. This paper provides a method for computing domains of such functions for a large class of transition systems. The latter are related to model checking of transition systems defined by Thue congruences.

[1]  Paliath Narendran,et al.  Some Polynomial-Time Algorithms for Finite Monadic Church-Rosser Thue Systems , 1989, Theor. Comput. Sci..

[2]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[3]  André Arnold,et al.  Finite transition systems , 1994 .

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  Étienne Payet,et al.  Synchronized Product of Linear Bounded Machines , 1999, FCT.

[6]  Larry Wos,et al.  Automated reasoning (2nd ed.): introduction and applications , 1992 .

[7]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[8]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[9]  Didier Caucal,et al.  On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..

[10]  Jürgen Avenhaus,et al.  Theorem Proving in Hierarchical Causal Specifications , 1997, Advances in Algorithms, Languages, and Complexity.

[11]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[12]  Jan van Leeuwen,et al.  Formal models and semantics , 1990 .

[13]  Étienne Payet,et al.  Thue Specifications, Infinite Graphs and Synchronized Product , 2000, Fundam. Informaticae.

[14]  Teodor Knapik,et al.  A String-Rewriting Characterization of Muller and Schupp's Context-Free Graphs , 1998, FSTTCS.

[15]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[16]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[17]  Norbert Kuhn,et al.  A method for enumerating cosets of a group presented by a canonical system , 1989, ISSAC '89.

[18]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[19]  J. R. Büchi Regular Canonical Systems , 1964 .

[20]  André Arnold,et al.  Finite transition systems - semantics of communicating systems , 1994, Prentice Hall international series in computer science.

[21]  Teodor Knapik,et al.  Thue Specifications and Their Monadic Second-order Properties , 1999, Fundam. Informaticae.